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Abstract

We introducea generétype of ogsimization algorithm which infers
data models reléing two differet but intertwined types of
informaion abou eat of a sd of objects A novd clustering
problem is slved by formuléing an objedive fundion which is
optimized For the ogimization of an objedive fundion describing
a generd classificaion problean we use a clocked objetive
function update schemeAs a concree example we apply the
clustering algathm to geologica data (rocks) to infe the spéial
as wél asminerd relationships vithin a field geology model We
ted the algoithm with syntheic dat generated according ta
patticularly chosa probability distribuion function.

1 Introduction

In generé clustering algathms are dependemn the presencefdeatures whik
distinguish among the dataThese features oabe mathemiicdly represented as
feature vectorsClustering & feature vectors cabe donem a variety of wayg auch
as K-means [DudeaHart, and Stork 200Q, EM for mixture models [Bishop1999,
and hierarchidaclustering algathms [C K. I. Williams 200J. Common to these
algorithms is the facthat all features are treated equivalentlythe joirt feature
space.

In this work we presdna unifying clustering method thaallows featuresa be
treated heterogeneouslyWe introduce a clustering algathm for mutudly
constraining heterogeneous featyremppicable to a variety of classifiction
problems Withou loss of geneddy we oonside the case & feature vectors
consiging of two heterogeneous feature domam&e will show tha this class of
“mixed’ feature vectors cabe successfly clustered by oumethod where standard
clustering algathms represented by EM famixture modelsfail .



In Secion 2 we explain the underlying theory of awlustering algathm by giving
an example aplpcation. We derive the appropriate constrainedi@pzation problem
for inferring, in this casegeologica relationships fran observel data (abou rocks)
in the fom of an objedive fundion, and define the opimization procedure using
clocked objetive fundion update schemeln Sedion 3 we show the resis of
numericd simulations fa the example apfication. We end with conclusions an@
discussia abou future work n Sedion 4.

2 Theory

The firg step of ou clustering method is to formulata abjedive fundion which is
to be opimized describing mathentecdly the dustering problem In orde to
optimize the objettive fundion the derivdéives wth respet to eah optimization
variable ae alculated In our cas docked objetive fundions [Gold Rangarajan
and Mjolsness1996 and Soft-assig techniques [RangarajarGold, and Mjolsness
199%; Rangarajan Yuille, Gold, and Mjolsness 1997 Rangarajan Yuille, and
Mjolsness 1999 are anployed fo the ogimization of the objetive fundion. We
will ill ustrate ou algorithm by giving aa example draw from geologicéd planetary
surface exploraon [Mjolsness Davies CastafipLou, and Fink 200Q.

2.1 Rock-Patch-Facies-Deposit Model

In our current study we look & selectel geologicd processesni a mairtian
environment Stating from wha a rover can actudly observe we deploy a
geologicd rock-patch-facies-depids modd describing rok placemen within
deposts (see Figl). We stress thiathe proposed rock-patch-facies-dejpposodd is
a generdized fom of classificdion, relating the distribtion of individud clasts to
ead othe to derive tle compostiond (facies) and sp#al (patches) rel@aonship
within the depois unde study This cax be compared ¢ aher distributions &
othe locations.
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Fig. 1: Relationship betwee depodts (patches and facies), patches (towa), faces
(mineral compoision and morphology) and individu rocks (locgion + mineral
compostion and morphology)

One aspedcof this modé is to define the memberships of individuacks wth
respet to spaial distribution and thei minerd compostion and morphology A



depo#t is a regiond assembly of spaally distributel patches wth a fixed raio of
rock classesThe distribdion of patd locations n a depo#t, rock locdions n a
patch and minerd compogtion vectors vithin a facies are ktaken to be Gaussia
here fo simplicity. Based a this <enariq an objedive fundion can be derived
(see 2.2)Observable parameters $uas rock locdon, shapeclad sizeg and spect
can be used to invérthe model egimating the extent and compoision of surface
deposts and idetifying the correspondig geologicd formation processes (fluvial
impact volcanig aedian).

2.2 Objective Function
From the above descrildegeologicd modd we derive a appropria¢ mnstrained

objedive fundion for inferring geologicd relationships fron observe data (in this
case rocks)The fundion to be opimized is:
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subjed to the fdlowing constraints:
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where F : membership matrix fofacies| in depo# a (the key many-to-many
relationship whit expresses the “intertwinifigof minerd and spéal informaion);

P : membership matrix of palcb in depost a; R: membership matrix of rockin
patd b; Q: membership matrix of rockin faciesl; Yy, : spaial locéion of cente

of depodt a; (J,: locaion of cente of patc b; cf, : compodtion vecta for faciesl;
X : observed spaal locdion of rock i; C: observed compason of rock i;

Hy,..., Us: reward/penty weights.

Thes wmnstraints a enforced by adding the fowing entropy (—TS) and

La@llraﬂ@Jiaﬂ-multiplier()\b,vi , )4) terms to the objgive fundion:
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The overd objedive fundion E is the sm of the patial objedive fundions:

E=E +E,+E,



An essetial difference betwee our algoithm over, e. g., EM for mixtures of
Gaussiansis the fourth-orde PRQF temm which allows informdion from the
minerd clustering and the two-lel/espatial clustering subproblems to intetaand
mutudly constran one another.

2.3 Clustering Algorithm and Optimization Process

To perfom the oonstrained opmization we use deteninistic anneding with
clocked objetive fundions and Soft-assigronverging taoa fixed point as show in
the fdlowing pseudo-algathmic excerip:

T =T_max;
energy = EvalEnergy(parameters,T);

/* main deterministic annealing loop */
while (T >T_min)

{
UpdateDepositMeans(parameters); I*y a*
UpdatePatchMeans(parameters); [* psi_b*/
UpdateFaciesMeans(parameters); [*cf_|*/
UpdateDepositPatchMemberships(parameters,T); [*P*
UpdatePatchRockMemberships(parameters,T); *R*
UpdateFaciesRockMemberships(parameters,T); *Q*
UpdateDepositFaciesMemberships(parameters,T); /*F*
[* anneal temperature */
T *=T_rate;
energ = EvalEnergy(parameters,T);

The necessarypdate equdions fa the algoithm are derived by s8ng the patial
derivaives of the objetve fundion E with respet to ead variable to 0:
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3 Results

To demonstrate the algthm we show oe example using three depéts nine
patchesand three six-tnension& facies.

3.1 Generation of Synthetic Data Sets

The rocks togethrewith their respetive faciesthe patt centersthe facies centers
and the depds centers are generated fnol-D Gaussia distributions fa eadt
dimension (two dimensim for x- and y-sp#ial coordinates six dimensions fo
facies) The variances we used are asldws depost-center-variances 10.0
patch-center-variances3.0, facies-center-variances10.0 rock-locaion-variances
= 0.3, and rock-facies-variances1.0.



3.2 Simulation Results

Figure 2 shows theimulation resuts for an example synthiec dah set generated
using the above variances.
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Fig. 2: a) source dat labels — spaa domain b) source dat labels —minerd
domain c) calculated RPFD-clusters — $igh domain d) calculated RPFD-clusters
— minerd domain e) calculated EM-clusters — dpa domain f) calculated EM-
clusters -minerd domain.



4 Discusson

We have introduced clustering methd using clocked objecve fundions and Soft-
assig techniques b gptimize an appropriately formulated objgge fundion, tha
allows clusteringbetwean mutudly constraining heterogeneous featurés our
study the heterogeneous features ardigpand minerd features wh which the
relationships vithin a geologica rock-patch-facies-depdsmodd are infered. We
demonstrated the algbhm using synth&c dat generated according to the rock-
patch-facies-depdas data model We furthe showed tha standard clustering
algoiithms sub as EM fal to cluste corredly in the joirt feature space.

Since the opmal choice of the reward/peftyg weights U,,...,Us mug be

detemined we usec simulated aneding based algathm to olktain an optimized
sd of weights As criteria for the quéity of the weigh s& we employed two
measures (1) we alculated the norniezed sun of the sm#ed Eudidian

differences betwaethe origind and the nearéscalculatel depost means patth

meansand facies meang2) we computed confusiacn matrix for ead type of labé

(depost, patch and facies) ath detemined the bdsassignmen of origind class
labels to esmated classes obtainedittv our algorithm. The score fo eat labd

type is give by the percentage of o@d rocks.

Future work would look athe scalallity of our method and would exaine the
performance © more complicated taskse. g., one depos completely embeddedhi
another. h the absence of ground truth infortran (e g., knowing the geneting
means and variances of the invalwdstributions) cross-viadation could be used to
detemine the opimal reward/penlly weights [Smyth 19964.

At adeepe analytica level that is, for sciertific interpretaion of the observed (and
now classified) facigsmatheméica models of physichprocesses eabe used to
invert the distribuion of materials to create the origingpre-process) distriliion
and quantify the strengt of the processtself. Oneill ustraive example may be the
mapping of tle gecta aounda simple impad crater The rock-patch-facies-depibs
modd allows the differenconcentrédons and ejeetsizes to be puinto classesand
the resiting distributions boh mineralogich and physicd (e.g distribution of clag
sizes degree of shock) cabe used vthin the modé of crater forméion and ejeca
emplacemento detemine origind straigraphy andnineralogy.
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