
 

Cl ust eri ng A l gor i t hm f or M ut uall y 
Const r ai ni ng Het er ogeneous Feat ur es 

 
 Wolfgang Fink Rebecca Castaño 
 Jet Propulsion Laboratory Jet Propulsion Laboratory   
 Cali fornia Institute of Technology Cali fornia Institute of Technology 
 Pasadena, CA 91109-8099 Pasadena, CA 91109-8099  
 wolfgang.fink@.jpl.nasa.gov  rebecca.castano@jpl.nasa.gov  
 

 Ashley Davies Eric Mjolsness 
 Jet Propulsion Laboratory Jet Propulsion Laboratory   
 Cali fornia Institute of Technology Cali fornia Institute of Technology 
 Pasadena, CA 91109-8099 Pasadena, CA 91109-8099  
 ashley.davies@jpl.nasa.gov  mjolsness@jpl.nasa.gov  

Abstract 

We introduce a general type of optimization algorithm which infers 
data models relating two different but intertwined types of 
information about each of a set of objects. A novel clustering 
problem is solved by formulating an objective function which is 
optimized. For the optimization of an objective function describing 
a general classification problem we use a clocked objective 
function update scheme. As a concrete example we apply the 
clustering algorithm to geological data (rocks) to infer the spatial 
as well as mineral relationships within a field geology model. We 
test the algorithm with synthetic data generated according to a 
particularly chosen probabilit y distribution function. 

1 I nt r oduct i on 

In general clustering algorithms are dependent on the presence of features which 
distinguish among the data. These features can be mathematicall y represented as 
feature vectors. Clustering of feature vectors can be done in a variety of ways such 
as K-means [Duda, Hart, and Stork, 2000], EM for mixture models [Bishop, 1995], 
and hierarchical clustering algorithms [C. K. I. Willi ams, 2000]. Common to these 
algorithms is the fact that all features are treated equivalently in the joint feature 
space. 

In this work we present a unifying clustering method that all ows features to be 
treated heterogeneously. We introduce a clustering algorithm for mutuall y 
constraining heterogeneous features, appli cable to a variety of classification 
problems. Without loss of generalit y we consider the case of feature vectors 
consisting of two heterogeneous feature domains. We will show that this class of 
“mixed” feature vectors can be successfull y clustered by our method where standard 
clustering algorithms, represented by EM for mixture models, fail . 
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In Section 2 we explain the underlying theory of our clustering algorithm by giving 
an example appli cation. We derive the appropriate constrained optimization problem 
for inferring, in this case, geological relationships from observed data (about rocks) 
in the form of an objective function, and define the optimization procedure using a 
clocked objective function update scheme. In Section 3 we show the results of 
numerical simulations for the example appli cation. We end with conclusions and a 
discussion about future work in Section 4. 

2 T heor y 

The first step of our clustering method is to formulate an objective function which is 
to be optimized, describing mathematicall y the clustering problem. In order to 
optimize the objective function the derivatives with respect to each optimization 
variable are calculated. In our case clocked objective functions [Gold, Rangarajan, 
and Mjolsness, 1996] and Soft-assign techniques [Rangarajan, Gold, and Mjolsness, 
1996; Rangarajan, Yuill e, Gold, and Mjolsness, 1997; Rangarajan, Yuill e, and 
Mjolsness, 1999] are employed for the optimization of the objective function. We 
will ill ustrate our algorithm by giving an example drawn from geological planetary 
surface exploration [Mjolsness, Davies, Castaño, Lou, and Fink, 2000]. 

2.1 Rock -Pat ch-Faci es-Deposi t  M odel  

In our current study we look at selected geological processes in a martian 
environment. Starting from what a rover can actuall y observe, we deploy a 
geological rock-patch-facies-deposit model describing rock placement within 
deposits (see Fig. 1). We stress that the proposed rock-patch-facies-deposit model i s 
a generali zed form of classification, relating the distribution of individual clasts to 
each other to derive the compositi onal (facies) and spatial (patches) relationship 
within the deposits under study.  This can be compared to other distributions at 
other locations. 

 

 

 

One aspect of this model is to define the memberships of individual rocks with 
respect to spatial distribution and their mineral compositi on and morphology. A 

Fig. 1: Relationship between deposits (patches and facies), patches (location), facies 
(mineral compositi on and morphology), and individual rocks (location + mineral 
compositi on and morphology). 



 

deposit i s a regional assembly of spatiall y distributed patches with a fixed ratio of 
rock classes. The distribution of patch locations in a deposit, rock locations in a 
patch, and mineral compositi on vectors within a facies are all t aken to be Gaussian 
here for simpli city.  Based on this scenario, an objective function can be derived 
(see 2.2). Observable parameters such as rock location, shape, clast size, and spectra 
can be used to invert the model, estimating the extent and compositi on of surface 
deposits and identifying the corresponding geological formation processes (fluvial, 
impact, volcanic, aeoli an). 

2.2 Obj ect i ve  Funct i on 

From the above described geological model we derive an appropriate constrained 
objective function for inferring geological relationships from observed data (in this 
case rocks). The function to be optimized is: 
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subject to the foll owing constraints: 

 
1 1 1

0 1, 1;0 1, 1;0 1, 1
A B L

ab ab bi bi li li
a b l

P P R R Q Q
= = =

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤∑ ∑ ∑  

where F : membership matrix of facies l  in deposit a (the key many-to-many 
relationship which expresses the “intertwining” of mineral and spatial information); 
P : membership matrix of patch b in deposit a; R : membership matrix of rock i  in 
patch b; Q : membership matrix of rock i  in facies l ; ay : spatial l ocation of center 

of deposit a; bψ : location of center of patch b; lcf : compositi on vector for facies l ; 

ix : observed spatial location of rock i ; ic : observed compositi on of rock i ; 

1 5, ,µ µ! : reward/penalty weights. 

These constraints are enforced by adding the foll owing entropy ( )TS−  and 

Lagrangian-multiplier ( ), ,b i iλ ν γ  terms to the objective function:  
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The overall objective function E  is the sum of the partial objective functions: 

 1 2 3E E E E= + + . 



 

An essential difference between our algorithm over, e. g., EM for mixtures of 
Gaussians, is the fourth-order PRQF term which all ows information from the 
mineral clustering and the two-level spatial clustering subproblems to interact and 
mutuall y constrain one another. 

2.3 Cl ust e r i ng  A l gor i t hm and Opt i mi zat i on Pr ocess 

To perform the constrained optimization we use deterministic anneali ng with 
clocked objective functions and Soft-assign, converging to a fixed point as shown in 
the foll owing pseudo-algorithmic excerpt: 
 
T = T_max; 
energy = EvalEnergy(parameters,T); 
 
/* main deterministic annealing loop */ 
while ( T > T_min ) 
{ 
    UpdateDepositMeans(parameters);   /* y_a */ 
    UpdatePatchMeans(parameters);    /* psi_b */ 
    UpdateFaciesMeans(parameters);   /* cf_l */ 
    UpdateDepositPatchMemberships(parameters,T);  /* P */ 
    UpdatePatchRockMemberships(parameters,T);  /* R */ 
    UpdateFaciesRockMemberships(parameters,T);  /* Q */ 
    UpdateDepositFaciesMemberships(parameters,T);  /* F */ 
 
    /* anneal temperature */  
    T *= T_rate; 
    energy = EvalEnergy(parameters,T); 
} 

 

The necessary update equations for the algorithm are derived by setting the partial 
derivatives of the objective function E  with respect to each variable to 0: 
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3 Resul t s 

To demonstrate the algorithm we show one example using three deposits, nine 
patches, and three six-dimensional facies. 

3.1 Generat i on of  Synt het i c  Dat a  Set s 

The rocks together with their respective facies, the patch centers, the facies centers, 
and the deposit centers are generated from 1-D Gaussian distributions for each 
dimension (two dimension for x- and y-spatial coordinates, six dimensions for 
facies). The variances we used are as foll ows: deposit-center-variances = 10.0, 
patch-center-variances = 3.0, facies-center-variances = 10.0, rock-location-variances 
= 0.3, and rock-facies-variances = 1.0. 



 

3.2 Si mul at i on Resul t s 

Figure 2 shows the simulation results for an example synthetic data set generated 
using the above variances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: a) source data labels – spatial domain; b) source data labels – mineral 
domain; c) calculated RPFD-clusters – spatial domain; d) calculated RPFD-clusters 
– mineral domain; e) calculated EM-clusters – spatial domain; f) calculated EM-
clusters – mineral domain. 
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4 Di scussi on 

We have introduced a clustering method using clocked objective functions and Soft-
assign techniques to optimize an appropriately formulated objective function, that 
all ows clustering between mutuall y constraining heterogeneous features. In our 
study the heterogeneous features are spatial and mineral features with which the 
relationships within a geological rock-patch-facies-deposit model are inferred. We 
demonstrated the algorithm using synthetic data generated according to the rock-
patch-facies-deposit data model. We further showed that standard clustering 
algorithms such as EM fail to cluster correctly in the joint feature space. 

Since the optimal choice of the reward/penalty weights 1 5, ,µ µ!  must be 

determined we used a simulated anneali ng based algorithm to obtain an optimized 
set of weights. As criteria for the qualit y of the weight set we employed two 
measures: (1) we calculated the normali zed sum of the small est Eucli dian 
differences between the original and the nearest calculated deposit means, patch 
means, and facies means; (2) we computed a confusion matrix for each type of label 
(deposit, patch, and facies) and determined the best assignment of original class 
labels to estimated classes obtained with our algorithm. The score for each label 
type is given by the percentage of correct rocks. 

Future work would look at the scalabilit y of our method and would examine the 
performance on more compli cated tasks, e. g., one deposit completely embedded in 
another. In the absence of ground truth information (e. g., knowing the generating 
means and variances of the involved distributions) cross-vali dation could be used to 
determine the optimal reward/penalty weights [Smyth, 1996]. 

At a deeper analytical level, that is, for scientific interpretation of the observed (and 
now classified) facies, mathematical models of physical processes can be used to 
invert the distribution of materials to create the original (pre-process) distribution 
and quantify the strength of the process itself.  One ill ustrative example may be the 
mapping of the ejecta around a simple impact crater.  The rock-patch-facies-deposit 
model all ows the different concentrations and ejecta sizes to be put into classes, and 
the resulti ng distributions both mineralogical and physical (e.g. distribution of clast 
sizes, degree of shock) can be used within the model of crater formation and ejecta 
emplacement to determine original stratigraphy and mineralogy. 
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