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Abstract

We present a multiple-instance regression algorithm that
models internal bag structure to identify the items most rel-
evant to the bag labels. Multiple-instance regression (MIR)
operates on a set of bags with real-valued labels, each con-
taining a set of unlabeled items, in which the relevance
of each item to its bag label is unknown. The goal is to
predict the labels of new bags from their contents. Un-
like previous MIR methods, MI-ClusterRegress can oper-
ate on bags that are structured in that they contain items
drawn from a number of distinct (but unknown) distribu-
tions. MI-ClusterRegress simultaneously learns a model of
the bag’s internal structure, the relevance of each item, and
a regression model that accurately predicts labels for new
bags. We evaluated this approach on the challenging MIR
problem of crop yield prediction from remote sensing data.
MI-ClusterRegress provided predictions that were more ac-
curate than those obtained with non-multiple-instance ap-
proaches or MIR methods that do not model the bag struc-
ture.

1 Introduction

Classical supervised learning methods operate on indi-
vidual items, each represented by a feature vector and as-
signed a label, which is either categorical (for classifica-
tion) or real-valued (for regression). However, some learn-
ing problems do not fit this model. There are situations in
which observations are instead bags of items, with a single
label applied to the bag. These tasks require a multiple-
instance learning (MIL) approach. For example, the prob-
lem that first motivated this area of research was to predict a
drug’s activity (“active” or “inactive”) given observations of
multiple structural conformations of the drug molecule [5].
Only some of the observed conformations contributed to the
label of the molecule, but it was not known which ones were
relevant.

Less work has been done in the area of multiple-instance
regression (MIR). When the bags have real-valued labels,
the goal is to construct a regression model that can predict
a bag’s label from its contents. Primary-instance regres-
sion [14, 4] assumes that a single item in each bag dic-
tates the label. It can select primary instances for labeled
bags, but it cannot make predictions for a new bag unless
it is known a priori which item is the primary one. Other
methods [13] assume that all items in the bag are relevant;
they generate predictions for a new bag by predicting the
outcome for each item inside the new bag and aggregating
those results into a bag label. No existing methods have
demonstrated the ability to identify which subset of items
in a new bag are relevant.

The core assumption of existing approaches is that the
bags themselves are unstructured: the items in the bag are
drawn from a single, fixed distribution. For example, in
drug activity prediction, all items in a bag are different con-
formations of the same molecule. However, in some do-
mains (such as the remote sensing data we study in this pa-
per), the bags are structured: they contain items drawn from
a number of distinct underlying data distributions.

The main contribution of this paper is MI-
ClusterRegress, an algorithm that learns a regression
model from structured multiple-instance data. On the
spectrum of data structure, from purely propositional
(i.i.d. data described by a single table) to purely relational
(highly auto-correlated data described by multiple arbitrary
relations), “traditional” multiple-instance data is a step
beyond propositional data in that it is described by two
tables: one maps items onto bags, and the other maps
bags onto labels. Our approach takes another step along
this spectrum by also mapping items onto (hidden) cluster
labels.

MI-ClusterRegress leverages the within-bag structure by
modeling the distinct data components with a clustering
step and then constructing local regression models for each
component. MI-ClusterRegress includes a final model se-
lection step that picks the best cluster/regression model.
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This step essentially asks, “which cluster is most associ-
ated with the target value?” As a side effect of constructing
the local models, MI-ClusterRegress also estimates the rel-
evance of each data item with respect to the bag label. MI-
ClusterRegress classifies previously unseen bags by map-
ping their contents onto the best-fit cluster selected during
training. The result is fed into the regression function of the
corresponding best-fit local model, yielding a scalar predic-
tion for that bag.

A compelling and large-scale problem that requires
multiple-instance regression is crop yield prediction from
remote sensing data [16]. Early prediction of expected
crop yields is a priority of the United States Department
of Agriculture (USDA) for two major reasons: crop yield
estimates can help establish pricing strategies, and an early
warning of low yield can inform corrective crop manage-
ment strategies (precision agriculture). Earth-orbiting in-
struments such as MODIS (the MODerate resolution Imag-
ing Spectroradiometer) collect global observations often
enough that they can be used to assess the current condition
of crops and thereby inform a crop yield prediction model.
The USDA tracks crop yield at the per-county level. This is
a MIR problem because each county (bag) has a single la-
bel but contains thousands of pixel-level multispectral sen-
sor observations, with no guidance as to which pixels are
relevant to the output. The bags are structured in that they
are composed of pixels drawn from a variety of underlying
distributions (e.g., corn, wheat, forest, cities, water), while
the bag label (e.g., corn yield) is associated with only one
of those distributions.

Our experiments on synthetic data and on crop yield pre-
diction confirm the need for explicitly modeling internal
bag structure when it is present (Section 4). Compared to
other learning methods on the same data, test error on the
synthetic data is reduced by orders of magnitude, and error
goes down by 1–10% when predicting crop yield.

We also demonstrate the ability to identify relevant
items, a particularly useful advance in the crop yield pre-
diction domain. Our approach can provide per-pixel crop
maps, a data product not currently available from any
source.

2 Related Work

A significant amount of work has been devoted to
methods for multiple-instance classification, including axis-
parallel rectangles to capture the target concept [5], diverse
density [11], voting by the k nearest neighbor bags [17],
support vector machines [2], and graph spectral meth-
ods [12]. Extensions beyond classification have progressed
in two directions: MIL with real-valued labels and multiple-
instance regression (MIR). As in MIL classification, the
goal of MIL with real-valued labels is taken to be the identi-

fication of a target concept t. The real-valued bag labels are
interpreted as the proximity (or similarity) of an item/bag
to t. Amar et al. [1] extended the k nearest neighbor and
diverse density approaches to bags with real-valued labels.
Goldman and Scott [8] interpreted the bag label to be “the
degree to which the example satisfies the target concept”
and used axis-aligned rectangles to learn the target concept.
While useful for identifying a target concept, none of these
approaches are designed to model or learn general regres-
sion relationships.

In contrast, MIR seeks to build a regression model that
maps bags to real-valued outputs; there is no notion of a
target concept t. Ray and Page [14] pioneered this area
by developing a primary-instance regression (PIR) method.
The PIR approach assumes that the label of a bag is deter-
mined by exactly one primary instance and that the rest of
the items in the bag are noisy observations of the primary in-
stance. PIR is an EM-based solution that alternately selects
the most likely primary instance for each training bag and
then to maximizes the fit of a linear regression through the
primary instances. The learned model can only be applied
to new bags if the primary instance for each one is known.
Cheung and Kwok [4] and Ray [13] identified problem do-
mains in which it is possible to assume that the primary
instance is the one with the largest output value. For other
domains, min, average, or sum are appropriate combining
functions, and it is possible to learn which of these four
functions applies to a given data set [13]. However, none of
these functions models per-item relevance to the bag label,
so the presence of irrelevant items will skew the results.

Methods that directly estimate item relevance include
CH-FD for classification [6] and QPAP-Salience [16] for
regression. These techniques use alternating optimization
to iteratively estimate item relevances and coefficients for
the learned models that predict bag labels. However, nei-
ther method can generalize to new bags, where both the bag
labels and item relevances are unknown. CH-FD was eval-
uated by applying the learned classifier only to individual
items, not bags. QPAP-Salience was not evaluated on new
data.

This paper advances the state of the art by proposing a
method that addresses both goals: assigning per-item rel-
evances and building regression models that can generate
predictions for new bags. These goals are achieved by ex-
plicitly modelling internal bag structure.

3 Multiple-Instance Regression

In the multiple-instance regression problem, we seek a
function that maps bags to real values. In many cases, the
bags are also structured: the bag contents are drawn from a
variety of different underlying distributions, not all of which
are relevant to the bag labels.
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Algorithm 1 The MI-ClusterRegress(D, Y, k) algorithm

1: Inputs: bag data D = {Bi}i=1···m, labels Y , number of clusters k
2: Outputs: regression parameters ψ′ and cluster parameters θ′ for the best local model
3: X :=

⋃
i=1···m Bi // Concatenation of all items into single set, ignoring bag structure

4: θi=1···k := Cluster(X, k) // Cluster all items into k clusters
5: for i = 1 to m do
6: for j = 1 to k do
7: R := Relevance(Bi, θj) // Relevance vector for items in bag i with respect to cluster j

8: B̂i
j := BiR // Exemplar for bag Bi in cluster j: weighted average of contents of Bi

9: end for
10: end for
11: for j = 1 to k do
12: ψj := Regress({B̂i

j}i=1···m, Y ) // Regression model for cluster j
13: end for
14: [ψ′, θ′] := Select({ψj , θj}j=1···k, {Bi}i=1···m, Y ) // Model selection: pick best local model to map all bags to all labels

3.1 Notation

We use lower-case italics to denote scalars (e.g., m, yi),
capital italics to denote vectors (Bi

j , Y ), and bold capitals
to denote matrices and sets (D, Bi). The ith column of the
matrix B is written B(i). Where possible, we use upper
subscripts to indicate indices over bags (Bi) and lower sub-
scripts to indicate indices over clusters (θj , Wj). Finally,
we use greek letters to denote parameter vectors (θ, ψ).

Bi denotes bag i from a data set D, which is a collec-
tion of m bags. Each bag consists of |Bi| d-dimensional
items, Bi(j)j=1···|Bi| ∈ R

d. (Note that, although bags may
contain different numbers of items, every item must be of
the same dimension.) Thus, each bag can be thought of as
a d × |Bi| matrix. In the MIR framework, each Bi has an
associated label, yi ∈ R.

3.2 The MI-ClusterRegress Algorithm

The core challenge of the MIR problem is that bags com-
prise variable numbers of items, while regression models
map individual items to scalars. We solve this problem by
reducing each bag to a fixed set of exemplars and then build-
ing traditional regression models over the exemplars. This
approach is in contrast to methods that apply the regression
model to individual items and then aggregate their predic-
tions to produce a bag label [13, 4], and it is a generalization
of methods that model bags with only one exemplar [6, 16].

The main assumption of the MI-ClusterRegress algo-
rithm (Algorithm 1) is that the individual items are drawn
(noisily) from a set of underlying clusters and that a bag’s
label is a function of one relevant cluster. For example, in
our remote-sensing problem domain, clusters might corre-
spond to “corn” and “wheat” crops as well as to cities, wa-
ter, and other non-crop pixels. The yield of a single crop,

such as corn, depends on all pixels in the corn cluster. Other
labels for the same bag, such as wheat yield, may be deter-
mined by different clusters in the same set of observations.

Each bag is assumed to contain items drawn from one or
more of these clusters. After clustering all items together
(Lines 3 and 4), we have (soft) assignments of each item
in each bag to each cluster. Using these assignments, we
construct per-bag exemplars for each cluster (5–10). The
exemplar for cluster j within bag i, B̂i

j , is the average of
all items in bag i weighted by their respective memberships
in cluster j (i.e., “relevances”, formalized below), denoted
by R. Given these exemplars, we construct a regression
model for each cluster j using the cluster j exemplars from
all bags (11–13). Finally, a model selection step identifies
the regression model (i.e., cluster) that best captures the re-
lationship between data and bag labels (14).

MI-ClusterRegress uses two black-box machine learning
subroutines: Cluster, an unsupervised clustering algorithm,
and Regress, a (possibly nonlinear) regression algorithm.
For any given application, the experimenter can select dif-
ferent clustering and regression subroutines.

Clustering. The only requirement on Cluster is that it
produce k generative cluster models, θj=1···k, that can as-
sign likelihoods to individual items. We used EM-based
Gaussian mixture models, but other unsupervised learners
are possible. For example, Latent Dirichlet Allocation [3]
would remove the need to specify the number of clusters,
while a spatio-temporal clustering model [15] might take
more advantage of the geographic nature of our crop-yield
prediction task. Or, if we wished to assume no structure
in the data, we could use a “null clusterer” that places
all of the items into a single cluster. In that case, MI-
ClusterRegress would reduce to simply aggregating each
bag to its (weighted) mean instance and building a regres-
sion model over all the means, akin to QPAP-Salience [16].
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Algorithm 2 The MI-ClusterPredict(B, θ′, ψ′) algorithm
1: Inputs: New bag B, cluster parameters θ′, regression

model parameters, ψ′

2: Output: Prediction for B: ŷ
3: R := Relevance(B, θ′) // Per-item relevance
4: B̂ := BR // Bag exemplar
5: ŷ := RegressPredict(B̂, ψ′) // Regression prediction

Regression. The regression learner, Regress, takes a set
of bag exemplars and returns a set of regression parame-
ters, ψ. It is applied, in turn, to the m bag exemplars for
each cluster, yielding k different local regression models,
ψj=1···k. This learner can be a linear or nonlinear regression
model. In this work, we employ a support vector regression
(SVR) learner1 with a grid search over kernels (linear and
RBF) and possible values for C, the regularization param-
eter. For RBF kernels, we used Jaakkola’s heuristic [10] to
set the scaling parameter γ = 1

m

∑m
i=1 min

j 6=i
dist(B̂i, B̂j),

where dist is Euclidean distance.

Model Selection. Once the clusters have been identified,
and a local model has been constructed for each one, MI-
ClusterRegress must select the most appropriate model for
predicting the bag labels provided. Model selection meth-
ods generally seek to trade off model complexity and gen-
eralization error. We have evaluated two model selection
heuristics:

• MSV: Minimize the number of Support Vectors used

• MTE: Minimize the Training Error

The MSV heuristic attempts to minimize the learned
model’s complexity, as an approximation to minimizing
‖w‖2 (which in turn bounds the VC dimension of the
model). In contrast, the MTE heuristic seeks the best em-
pirical fit to the training data, ignoring generalization. One
of the interesting results of our experiments is that the lat-
ter heuristic performs very well, despite the seeming risk of
overfitting.

Prediction. The MI-ClusterPredict algorithm (Algo-
rithm 2) assigns a predicted value, ŷ, to a previously
unlabeled bag. It takes as input the new bag and the
local model cluster and regression parameters, θ′ and
ψ′, that were picked in the model-selection step of MI-
ClusterRegress. It computes the relevance of each item in
the new bag to the local model cluster, and then constructs
the corresponding weighted average exemplar for this
bag. It employs a RegressPredict routine, corresponding
to the Regress learner from MI-ClusterRegress, that uses

1We used the Matlab SVM Toolbox by S. Gunn [9], from http://
www.isis.ecs.soton.ac.uk/resources/svminfo/.

Algorithm 3 The Relevance(B, θc) subroutine
1: Inputs: Single bag B, parameters for one cluster θc

2: Output: Relevance column vector R
3: r(i) = p(cli = c|B(i); θc), ∀i
4: z :=

∑
i r(i)

5: R(i) := r(i)/z, ∀i // Relevance of item i to cluster θc

previously learned regression parameters to predict a label
for the exemplar.

Relevance. Both MI-ClusterRegress and MI-
ClusterPredict calculate the relevance of a given item to a
particular cluster (Algorithm 3). The generative model for
a cluster c with parameter θc provides p(B(i)|cli = c; θc)
where cli = c means that item i was generated by cluster c.
Via Bayes’s rule, we can calculate p(cli = c|B(i); θc) (this
is the usual “responsibility” computed in the the E step
of an EM algorithm). We renormalize these values across
the bag so that the sum of all relevances within a bag is 1.
Thus, the relevance of an item, with respect to a cluster,
is sensitive to its context, which is the rest of the bag’s
contents. The renormalization ensures that the exemplar
for the cluster is a weighted average of the contents of the
bag (i.e., it is an affine combination of the bag data).

A key benefit of this approach is that, unlike previous
MIR methods [14, 13, 4, 16], it is for the first time pos-
sible to identify relevant items in new bags, and therefore
to achieve truly “multiple-instance” regression. Previous
methods could make predictions for single items, but then
were forced to either make fixed assumptions about which
single item would dictate the label, or assume (or learn)
which aggregator should combine all |B| predictions into a
bag label. The critical difference is that MI-ClusterRegress
is able to transfer what is learned on the training bags about
relevance to the test bags, using the cluster models, and this
provides the missing information needed to assign appro-
priate relevance values and generate the correct label.

3.3 Illustrative Example

Consider the five-bag data set shown in Figure 1(a).
Each bag contains several one-dimensional items and a real-
valued label. Each item has an unknown degree of relevance
to the bag label. We plot these items with their single fea-
ture along the x axis, with all items from a given bag sharing
their bag’s label as the y value.

A non-multiple-instance approach would be to use all
of the items as training data, assigning each item the la-
bel of its bag, and building a single regression model (Fig-
ure 1(a), marked “global model”). (For simplicity, we use
linear models in this example.) This model provides a poor
fit to the data, since it is required to model all of the items,
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(a) Global model: Map all items to their bag’s
label.
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(b) Single exemplar: Replace each bag with its
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(c) MI-CR: Create cluster 1 (‘x’) and cluster
2 (‘o’), then create an exemplar (‘+’) for each
cluster, in each bag.

Figure 1. A simple example showing how MI-ClusterRegress works. The data consists of five bags
containing some number of one-dimensional items (a and b). After clustering, bag exemplars are
shown as ‘+’ (c). A single, global regression model (a) fits the data poorly. Reducing every bag to
a single average exemplar and then fitting a single regression model to those exemplars (b) also
yields a poor model. Finally, the combination of clustering, regression, and model selection permits
the identification of the relevant subset of items in each bag (c), which are best fit by local model 1.

whether or not they are relevant to the bag labels. A second
approach preserves the bags but does not model structure
within the bags. It replaces each bag with a single exem-
plar that is the average of its contents, shown as ‘+’ in Fig-
ure 1(b). A linear model is fit to the exemplars and their
bag labels, providing a slightly better fit than the global
model. This is the approach used by QPAP-Salience [16],
which cannot be applied to new test bags unless the new
item weights are known (or assumed).

MI-ClusterRegress instead identifies k local models.
Given k = 2, MI-ClusterRegress first ignores the bag
boundaries and clusters all of the one-dimensional data into
two clusters. Figure 1(c) shows the cluster assignments by
marking items with ‘x’ (cluster 1) and ‘o’ (cluster 2).2 MI-
ClusterRegress then computes two exemplars for each bag,
one for each cluster, shown as ‘+’ symbols in Figure 1(b).

Next, MI-ClusterRegress trains k = 2 regression models,
one based on the bag exemplars for cluster 1, and the other
based on the bag exemplars for cluster 2. In each case, the
same bag labels are used as the regression targets. The
regression model for cluster 1 obtains an RMSE of 0.0647,
while cluster 2’s model obtains an RMSE of 0.81. Selecting
the model with minimum error (RMSE) items to cluster 1 as
the best match, with a model that is far superior to either the
global model or the single-exemplar approach that ignores
internal bag structure. MI-ClusterRegress is able to generate
predictions for new bags because the cluster models allow
the assignment of relevance values even to unseen items.

2The cluster assignments here are hard-thresholded versions of the soft
assignments produced by EM.

4 Experimental Results

We have conducted experiments with synthetic data
(known linear models) and with remote sensing data (to pre-
dict crop yield) to assess how well MI-ClusterRegress can
both learn accurate regression models and identify the rel-
evant items in each bag. All data sets used in these exper-
iments are available at http://harvist.jpl.nasa.
gov/papers.shtml.

4.1 Baseline Methods

We have identified two important baselines against
which MI-ClusterRegress should be compared. The first
posits that the multiple-instance regression problem can
be solved as a regular supervised learning problem. The
second suggests that a single exemplar per bag suffices
to learn a good model; that is, the clustering step in
MI-ClusterRegress is not needed. Together with MI-
ClusterRegress, these represent a spectrum of assumptions
about data structure: no bags → unstructured bags → struc-
tured bags.

Baseline 0: Global model (no bags). This baseline re-
moves the bag structure by training a model on all of the
items in the data set, giving each individual item the label
of its bag. That is, it converts D into

⋃
i B

i with a total of
n =

∑
i |Bi| items and expands the vector of m bag labels

Y to include |Bi| copies of yi. Then, regular supervised
learning methods can be used to learn a regression model
mapping all input items to their labels. This approach as-
sumes that that every item in a bag has the same relationship
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to the bag label, which can be modeled with a single global
model. An example was shown in Figure 1(a).

Baseline 1: Single exemplars (unstructured bags).
Another simple approach is to represent each bag with a sin-
gle exemplar that is the (unweighted) average of the items
in the bag. This baseline makes no attempt to model struc-
ture within a bag. It converts D into

⋃
i

(
1

|Bi|
∑

j Bi(j)
)

,
which contains m items, and uses Y unchanged. Again,
regular methods can learn a regression model mapping the
exemplars to the bag labels. This is the solution shown in
Figure 1(b). It is akin to QPAP-Salience with the assump-
tion that all items are equally relevant.

We cannot provide a quantitative comparison with pri-
mary instance regression, since there is no method for se-
lecting the primary instance in new bags. In their exper-
iments, Ray and Page assumed that the primary instance
for each test bag was known a priori [14], and Cheung and
Kwok [4] assumed that the primary instance was the item
with the largest individual output, which is inappropriate
for our data sets. Regardless, it seems likely that more than
a single item is needed to predict labels for structured bags
accurately, especially when predicting crop yield from re-
mote sensing data.

4.2 Synthetic Data Experiments

To evaluate the MI-ClusterRegress approach in a con-
trolled setting, we generated a series of one-dimensional
synthetic data sets with known structure and models. We re-
fer to the items generated by distribution c as “component”
c. We created synthetic bags with 10 items per component,
where the jth item in the cth component of the ith bag was
drawn according to Bi

c(j) ∼ N (µc + f i
c, σc). The cth

mean, µc, was selected uniformly at random from the inter-
val [20c, 20c+10), and all models used a standard deviation
of σc = 3. f i

c was an offset applied to component c in bag i,
randomly drawn ∼ N (0, 4). This offset is a critical factor;
if all items for component c were generated from µc alone,
then the bags would be indistinguishable in terms of their
contents and their labels, leaving no basis for generaliza-
tion. The complete ith bag with k components is denoted
Bi,k.

We used a randomly selected linear model to generate
the bag label based on the mean and offset for a randomly
selected component r:

yi = 6.34 (µr + f i
r)− 2.24.

The bag labels yi are correlated with the data from compo-
nent 1, but not with the data in other components, since they
have different offsets.

We created 20 bags per data set:

Dk = {Bi,k}20
i=1, Y = [y1 . . . y20]

T
,

Table 1. Test error (RMSE) on synthetic data
as the number of components k increased,
averaged over 10 trials. Results matching the
oracle are in bold. Data set Dk had 20 bags,
each with k components containing 10 items.

Data MI-ClusterRegress B0: B1: No
set MSV MTE Oracle Global structure
D2 2.58 2.58 2.58 221.61 55.04
D3 11.36 7.67 7.67 6271.24 76.81
D4 4.13 3.97 3.52 22.67 61.89
D5 3.87 3.70 3.70 3818.13 18.30
D6 2.71 2.92 2.71 2938.81 165.94
D7 7.16 5.06 5.05 3529.47 26.84
D8 5.31 5.31 4.44 230.76 160.08
D9 12.14 9.82 9.27 230.76 160.08
D10 4.25 4.25 4.25 140.75 39.70

where Dk was “nested” inside Dk+1 in that the bags in
Dk+1 use the data already generated from the first k com-
ponents, plus an additional new component k+ 1, not asso-
ciated with the bag label. Thus, as k increases, the relevant
items within each bag are rarer and more difficult to dis-
tinguish. Since each bag consists of k components, each
containing 10 items, data set Dk contains 200k total items.

The goal of these experiments was to assess 1) how ac-
curately MI-ClusterRegress can construct and select a local
model that predicts the bag labels, and 2) how sensitive MI-
ClusterRegress is to an incorrect choice of k.

Methodology. For each experiment, we randomly split
Dk into a training set (15 bags) and test set (5 bags). We
further split the training set into base training (11 bags) and
parameter tuning (4 bags) sets. We shifted and scaled Y to
0 mean and 1 standard deviation. We constructed each SVR
model (used by MI-ClusterRegress or the baselines) with
a linear kernel, error tolerance ε = 0.1, and its own grid
search over regularization parameter C ∈ 10{0,1,2,3,4,5} on
the tuning set.

Results. We found that MI-ClusterRegress performed
very well at this task, outperforming both baseline meth-
ods (Table 1). We also report the results obtained when se-
lecting the model that minimizes testing error (“Oracle”),
which provides a lower bound on MI-ClusterRegress’s
achievable error rate. This experiment did not aim to
achieve zero test error (more than 15 training examples
would be needed), but to compare performance against the
baseline methods in a challenging (but artificial) setting.

The oracle’s RMSE remained low for all values of k,
while the baseline RMSE values were 1 to 3 orders of mag-
nitude larger. The supervised approach of ignoring the bag
boundaries (baseline 0) resulted in the worst performance;
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Figure 2. Test error (RMSE) for MI-
ClusterRegress with the MTE heuristic
when analyzing Dk and modeling the data
with 2 to 10 clusters (using a single train/test
split, averaged over 100 trials, with standard
deviation bars shown). Using too large a
value for k did not impact error, but too small
a value for k did.

using a single exemplar to represent each bag (baseline 1)
improved performance but fell short of MI-ClusterRegress.

The MTE model selection heuristic performed better
than the MSV heuristic for half of the k values, while MSV
outperformed MTE only once (k = 6). When there are
multiple local models with the same number of support vec-
tors, MSV simply chooses the first one, which can lead
to poor generalization. A more precise min-complexity
heuristic could improve this performance. In several, but
not all, cases, the heuristics matched the oracle’s perfor-
mance. The low RMSE across all k values confirms that
MI-ClusterRegress is robust even in the presence of a large
number of irrelevant items (e.g., for k = 10, each bag had
200 items but only 10 relevant ones), if there is a common
structure to leverage.

What local models were learned? A frequently selected
MI-ClusterRegress model (by both heuristics and the oracle)
was y = 5.99x+5.40, which is close although not identical
to the “true” generating model, y = 6.34x− 2.24. In com-
parison, example models learned by Baseline 0 and 1 were
(e.g., for k = 3) y = 0.09x+151.54 and y = 4.83x−71.52;
both are very far off from the true model.

Since we may not always know the exact number of com-
ponents in the data, we analyzed MI-ClusterRegress’s sen-
sitivity to the choice of k, the number of clusters to model.
Figure 2 shows the results when MI-ClusterRegress, using
the MTE heuristic, was applied to Dk for k ∈ [4, 7]. For
each data set, we tried setting k = 2 to 10, only one of
which fit the true number of components in the data set. To
control the results, we used a single train/test split, but ran

MI-ClusterRegress 100 times, each with a different EM ini-
tialization; any variation is due to changes in the clustering
results, not the data set.

The results are striking. If the value chosen for k was
larger than the true number of components, the error rate
was not affected; while the clusters may have been overly
split, enough “signal” remained that MI-ClusterRegress
could choose a cluster and construct a good local regres-
sion model for it. However, if the value chosen for k was
much smaller than the true number of components, the er-
ror increased dramatically. The clusters merged the relevant
items with irrelevant ones, and as a result the local models
could not accurately fit the data.

We conclude from these experiments that 1) modeling
internal bag structure, when present, is critical for multiple-
instance regression, and 2) if the number of components is
not known, we recommend selecting a conservatively large
value for k.

4.3 Predicting Crop Yield

A challenging MIR problem is the task of predicting crop
yield early in the growing season, based on remote sens-
ing observations. Each year, the USDA reports the average
yield per acre, for each county in the U.S., for a variety of
crops. Predicting the expected yield, especially when done
early in the growing season, can inform agricultural market
decisions as well as crop management strategies (irrigation,
pest control, fertilizer, etc.).

Data Description. The MODIS instruments onboard the
Terra and Aqua satellites provide repeat coverage of the en-
tire United States every 1-2 days. We downloaded the 8-day
aggregate product which provides the best (cloud-free) ob-
servation of each pixel every 8 days. For each pixel, we ob-
tained a time series of observations, enabling us to generate
a new yield prediction every 8 days. Each pixel consisted of
observations at 250-m resolution, in the red (620–670 nm)
and near infrared (841–876 nm). We combined these two
values into a single index called NDVI (Normalized Differ-
ence Vegetation Index) as follows:

NDV I =
NIR−RED

NIR+RED
.

NDVI is known to provide a good indication of vegetation
abundance and health. Further, NDVI is particularly good
for identifying pixels that contain crops: they show a char-
acteristic NDVI peak leading up to the time before harvest.
Non-agricultural regions, in contrast, have flat NDVI pro-
files over the course of the year.

The crop yield data is also public data and comes from
the USDA National Agricultural Statistics Service (NASS).
We have created data sets that contain the remote sensing
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Table 2. Counties (bags) reporting yield for
corn and wheat in California (USDA-NASS).

Training Test
2001 2002 2003 2004 2005

17 16 18 15 13

and crop yield data for California over five years (2001–
2005). Table 2 shows the total number of counties that
reported yield values for two crops we studied, corn and
wheat.

This problem is challenging because the ratio of relevant
observations (pixels) to the desired predictions (county-
level crop yield) is so low. Each county contains thousands
to hundreds of thousands of pixels, and we do not know
which pixels (or even how many) contain the crop of inter-
est. This problem lends itself well to the multiple-instance
setting and provides both an important real-world appli-
cation for this work and a particularly challenging “stress
test” for any regression method. For the purposes of this
study, we randomly sub-sampled the remote sensing obser-
vations for each county to obtain 100 pixels for each bag;
ultimately, we aim to use more efficient EM and SVR im-
plementations and analyze all pixels in every county.

Methodology. We trained models on observations from
four years (2001–2004) with a 25% subset for parameter
tuning, and tested the models by predicting the yield for
2005. To make a prediction at day T (ranging from 8 to 360,
in increments of 8 days), we trained with pixels consisting
of the sequence of NDVI observations taken every 8 days
since the beginning of its year, up to day T . For example,
a prediction at day 80 in 2005 is made by a model created
from observing data from day 1 to 80 in 2001 through 2004
and matching them to the yield observed in those years.
Again, we shifted and scaled Y and used the grid search
previously described, except that the search included lin-
ear and RBF kernels, with the RBF γ parameter set using
Jaakkola’s heuristic [10]. Since we do not know a priori
how many components exist in this data, we tried several
different values for k, the number of clusters. We found that
the best results were obtained for k larger than 20; given the
results on the synthetic data, we selected a conservatively
large value of k = 30.

We compared the performance of MI-ClusterRegress on
this data set to Baseline 1, which does not model internal
bag structure. We did not apply Baseline 0 to this data be-
cause we identified a more accurate baseline, and because
Baseline 0 takes orders of magnitude longer to run than any
other algorithm we tested (it must train multiple regression
models, each time using the full data set, rather than one ex-
emplar per bag). Instead, we used a domain-specific base-
line for this problem. As in many time series prediction do-

mains, a default prediction that the next target value will be
the same as the last one observed can be surprisingly accu-
rate. Baseline 2: Last Year’s Yield predicts that the yield
this year will be identical to last year’s yield.

The magnitude of the target (yield) varies depending on
the crop. For example, in 2005 corn yield ranged between
146.3 and 211.8 bushels per acre, but wheat yield ranged be-
tween 49.3 and 98.5 bushels per acre. Therefore, to permit
comparisons across different crops, we evaluated the crop
yield predictions in terms of relative error:

Erel(y, ŷ) =
∣∣∣∣y − ŷ

y

∣∣∣∣ ,
where y is the true value and ŷ is the predicted value.

Results. We found that MI-ClusterRegress yielded results
superior to both baselines. Figure 3 shows the relative er-
ror in predictions made every 8 days during 2005 for both
wheat and corn. Each plot covers only the growing season
for the crop selected. The typical planting dates in Califor-
nia are May 15 (day 135) for corn and Dec. 15 (day -16) for
wheat; harvest dates are Oct. 20 (day 293) and July 1 (day
181), respectively.

In general, prediction error decreased as more observa-
tions were made (later in the year). This trend was stronger
for wheat than for corn predictions. The corn yield er-
rors were low throughout the year, and always lower than
the wheat yield errors, suggesting that the corn signal was
more evident in the remote sensing data. The “oracle” re-
sults show the error obtained if the model selection step pre-
cisely identified the best-fit cluster to model the crop cho-
sen. This error dropped as low as 10.7% at day 88 for wheat
(3 months before harvest) and 3.4% at day 224 for corn (2.5
months before harvest).

In terms of model selection, we found that MTE sig-
nificantly outperformed MSV (and baseline 2) in predict-
ing wheat yield (paired t-test, 95% conf.), while MSV
was better than MTE (and both baselines) for predicting
corn yield (paired t-test, 95% conf.). We suspect that a
domain-specific heuristic that prefers clusters with exem-
plars that show the characteristic time profile of an agri-
cultural crop [7], even if the time of harvest is not known,
would do even better.

The best possible MI-ClusterRegress results consistently
beat both baselines (by 1-10% relative error, statistically
significant with 95% conf.), confirming our hypothesis that
modeling internal bag structure is critical for this applica-
tion. Baseline 1, which does not model internal bag struc-
ture, was competitive with the best model selection heuristic
results for wheat but significantly worse than the model se-
lection results for corn, as noted above. Baseline 2 (using
last year’s yield) does not depend on the observations and so
had a constant error rate throughout the year of 18.3% for
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(a) Relative error in wheat yield predictions
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(b) Relative error in corn yield predictions

Figure 3. Relative error in predicting wheat and corn yield for California, as a function of day of year.
Each plot shows prediction error over the growing season for the crop in question. The models were
trained on data from 2001–2004 (k = 30) and tested on data from 2005.

wheat and 6.6% for corn. The model selection heuristics
were significantly better for both crops.

We also examined the cluster exemplars selected by MI-
ClusterRegress (data not shown). These exemplars repre-
sent NDVI time series for single categories (e.g., one for
wheat pixels, one for corn pixels, etc.) We found that the ex-
emplars for the corn and wheat clusters generally reflected
the planting, maximum foliation, and harvest dates for each
crop, despite no access to this domain knowledge.

Figure 4 demonstrates just one benefit of estimating in-
dividual item relevances. Figure 4(a) is a Google satellite
map3 of a randomly selected county with overlaid road and
city features. Figure 4(b) shows the estimated wheat rel-
evance values for the entire county (all 69,578 pixels) at
day 72 (March 12) in 2005, based on the MTE local model.
The lower-left corner of the relevance map is white (low
relevance) and corresponds directly to the I-5 corridor and
the non-irrigated, semi-arid foothills terrain. In the middle
of the county is a large patch of agricultural land, identi-
fied clearly as high-relevance in Figure 4(b). Although MI-
ClusterRegress was given no prior knowledge of crops, ter-
rain, or spatial or temporal locality, it successfully identified
semantically meaningful crop structure. To our knowledge,
this is the first system to automatically identify individual
crop locations from satellite images without any supervi-
sory crop-type labels.

5 Conclusions and Future Work

In this paper, we presented a new approach to multiple-
instance regression that explicitly models internal bag struc-
ture. After constructing a local regression model for each

3http://publicrecords.onlinesearches.com/maps/
map-of-Kings-County-California.htm

component in the data set, MI-ClusterRegress selects the
best-fit model and uses it to predict labels for new bags.
We found consistent evidence, based on synthetic data and
remote sensing data, that the presence of internal structure
requires an approach such as MI-ClusterRegress. The crop
yield predictions significantly out-performed other learning
approaches. The primary area for future work is the de-
velopment of better model selection heuristics, particularly
ones that incorporate domain knowledge. We also consider
it important to evaluate other models for internal bag struc-
ture, particularly those that relax the Gaussian distribution
assumption.
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