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Introduction: We are developing and testing data analysis
algorithms that are destined for use onboard the Thermal Emis-
sion Imaging System (THEMIS), currently in Mars orbit on
the Mars Odyssey spacecraft. In particular, these algorithms
can detect thermal anomalies (which could be indicators of
geothermal activity), track the movements of the seasonal po-
lar caps [1], and detect dust storms and water ice clouds in
the atmosphere. Performing data analysis onboard spacecraft
will permit better use of instrument time and bandwidth, as re-
cently demonstrated by the Autonomous Sciencecraft Experi-
ment (ASE) onboard Earth Orbiting 1 (EO-1). This spacecraft
can analyze scenes collected by the Hyperion instrument to de-
termine when features of interest, such as lake ice breakup or
volcanic eruptions, are present [2]. No such onboard analysis
has yet been performed by spacecraft in Mars orbit.

In this abstract, we report on results obtained by our dust
and water ice cloud detection algorithms when applied to
raw data as it is collected by THEMIS. We compare these
aerosol estimates to ground-based analyses of the fully cali-
brated THEMIS data by Smith et al. [3]. We find that both
algorithms are, on average, able to estimate optical depth (τ )
to within the same level of the uncertainty associated with the
values computed by Smith et al. We conclude that these algo-
rithms are performing at a level suitable for future use onboard
THEMIS.

Estimating Aerosols in the Martian Atmosphere: In
this work, we analyze THEMIS daytime infra-red (IR) images,
which have a 100-m spatial resolution. THEMIS observations
span nine wavelengths, from 6.78 to 14.88 µm. Each image
is 320 pixels (32 km) wide and a variable number (3600 to
14352) of pixels long, divided into 256-line “framelets”.

Smith et al. [3] developed a method for estimating the
atmospheric dust and water ice optical depths using calibrated
THEMIS data (bands 3-8). Their model relies on an estimate
of the surface emissivity from concurrent TES observations.
After analyzing data from February 2002 (Ls = 300◦) to March
2003 (Ls = 161◦), and evaluating their model on synthetic
spectra, they determined that the uncertainty associated with
their aerosol estimates was about 0.04 or 10% of the total
optical depth, whichever is larger [3].

The purpose of this work is to determine how closely we
can approximate the true optical depth values using only the
raw data that is available onboard THEMIS. In particular, we
do not make use of TES observations or any other source of
information. However, we do apply a pseudo-calibration to the
raw digital numbers DNb, as follows: Tb = Mb× ln(DNb)−
Ob, where Tb is the calibrated value for band b, and Mb and
Ob are constants determined empirically:

Band 2 3 4 5
Mb 231.82 86.02 49.52 45.42
Ob 914.11 167.28 -17.75 -38.43

Band 6 7 8 9
Mb 56.38 57.56 76.77 114.41
Ob 17.19 23.40 120.54 311.67

In the operational scenario we envision, scientists will be able
to specify an optical depth threshold that defines events of
interest (for example, a dust τ that exceeds 0.8). THEMIS will
then identify any images that contain these interesting events
and flag them for priority download. Flexibility in defining
“interesting” is essential for events such as dust storms, since
the minimum dust τ for what should be considered a “storm”
event varies with the season.

Methods: We explored different methods for building a
regression model that maps THEMIS observations at different
wavelengths to the dust and water ice optical depth values as
computed by Smith et al. In each case, we arbitrarily selected
every 50th framelet observed by THEMIS for inclusion in
a training set, from which we constructed our models. We
evaluated the models over the entire data set (72,061 framelets).
We also scaled the input data so that each band had a zero mean
and unit standard deviation.

Each linear regression model that we constructed is of the
form τ ′ = β+

∑9

b=2
wb×Tb where τ ′ is the predicted optical

depth, an approximation of the true value τ . The inputs are
THEMIS bands 2 through 9 (T2 through T9).

The simplest approach is to perform a linear least-squares
regression, in which we estimate the coefficients β and w so
as to minimize the sum of the squared errors between the true
τ and the predicted τ ′: ∑

i

(τi − τ ′
i)
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We also evaluated a support vector machine (SVM) regression
model, which is a recently developed advance over neural
networks [4]. This model attempts to trade off a linear fit to the
data with a “flatness” bias that provides better generalization
properties (to new observations). To do this, we minimize

1
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||w||2 + C

∑
i

(max(|τ − τ ′| − ε, 0)) (2)

in which C trades off the flatness bias (first term) with the
closeness of fit to the data (second term). β is solved for sepa-
rately. This formulation only penalizes the solution for errors
that are greater than ε, a tolerance factor. For our experiments,
we set ε to 0.01 and C to 50. It is possible to use the same
method with a “kernel” that maps the input data into a higher
feature space to permit nonlinear fits. The details are beyond
the scope of this abstract, but we will present results for lin-
ear and Gaussian kernels. The latter is more expressive, and
tends to provide a better regression fit, but is more expensive
to compute.
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(a) Atmospheric dust optical depth; the x-axis indicates Ls.

(b) Water ice cloud optical depth.

Figure 1: Optical depths predicted by two Gaussian SVMs trained on 1442 THEMIS daytime IR framelets (raw data), and evaluated
on 72,061 framelets, from Ls = 330◦ to Ls = 161◦ (wrapped to 521◦). As in [3], values are clipped to the ranges shown.

Experimental Results: We constructed three regression
models based on the training set (1442 framelets), then evalu-
ated them on the full data set in terms of the square root of the
mean squared error (RMSE) as well as the mean error (Merr):

Dust Ice
Regression method RMSE Merr RMSE Merr
Linear least squares 0.043 0.031 0.037 0.022

Linear SVM 0.044 0.032 0.037 0.023
Gaussian SVM 0.037 0.025 0.036 0.017

While the linear SVM performs about the same as a linear least
squares approximation, the Gaussian SVM is significantly bet-
ter. In addition, we generally find slightly better accuracy in
estimating water ice than in estimating dust. The mean accu-
racy obtained on both problems is within the 0.04 uncertainty
of the τ values that we are trying to predict. The τ predictions
of the Gaussian SVM for dust and for water ice are shown in
Figure 1, as a function of time of year (Ls) and latitude. These
results match those of Smith et al. quite closely, with the same
dust event observed early on. However, the small dust event
that takes place around Ls = 155◦ (here, 515◦) is not visible.
Likewise, the τ ′ values predicted for the water ice cloud op-
tical depth are highly accurate, although they vary from τ in
that they detect significant amounts of water ice north of 20◦

latitude from about Ls = 470◦ to 500◦. We plan to further
investigate these observations.

Conclusions: In this work, we have evaluated three re-
gression models that analyze raw data collected by the THEMIS
IR instrument and predict the optical depth for atmospheric
dust and water ice clouds. Because this approach does not rely
on calibration or any external sources of information about
the atmosphere or surface conditions, it is well suited for use
onboard THEMIS. Our experimental results show that SVM
regression models can predict dust and water ice cloud optical
depths with accuracy comparable to the uncertainty in the τ
values being predicted. This approach could be used onboard
THEMIS to permit passive monitoring for events of interest,
such as early detection of dust storms and the identification of
water ice clouds.
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