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Introduction:   Significant challenges face any user 

of planetary hyperspectral imagery. For the scientist, 
the sheer volume of data precludes exhaustive manual 
analysis. For the mission planner, the complex subtle-
ties of hyperspectral images are difficult to summarize 
in a readily interpretable product. Both experts would 
benefit from a rapid, robust means to create draft min-
eralogical maps, summarize novel detections, and gen-
erally draw attention to areas of interest for further 
investigation. In this work we discuss the Hii-HAT 
(Hyperspectral Image Interactive Helper and Analysis 
Tools) toolset developed for the IDL/ENVI environ-
ment. It attends to the specific requirements of plane-
tary geologists, such as low signal-to-noise ratios and a 
lack of reference spectra from the surface.  

Hii -HAT incorporates several novel algorithms, in-
cluding the concept of superpixel decomposition for 
noise removal and image feature enhancement. It as-
sists in the discovery of endmembers, forms mineral 
maps through interactive unmixing, and assists in the 
detection of appropriate neutral regions for a given 
region of interest (ROI). Here we explore its capabili-
ties with imagery from the Compact Reconnaissance 
Imaging Spectrometer (CRISM) instrument orbiting 
Mars [1], specifically the 1000-2500nm wavelengths 
of images (frt0000)3e12, 8158, 863e, and 3fb9. 

Superpixels:  Manual analysis often focuses on ei-
ther an individual spectrum at a single pixel or on the 
mean spectrum of a large ROI. The former approach 
preserves spatial resolution but is sensitive to meas-
urement noise. The later reduces noise but requires 
laborious manual segmentation. Automating segmenta-
tion, therefore, is of great interest with the caveat that 
any errors can easily average-out interesting signals. 

Many of Hii-HATÕs functions exploit a superpixel 
representation that combines benefits from both ap-
proaches. Superpixels represent the image as contigu-
ous regions a few tens or hundreds of pixels in area. 
By erring on the side of oversegmentation, superpixels 
reduce noise while preserving small signals evident in 
only a few contiguous image pixels. This preprocess-
ing step can improve further spectral analysis by sim-
ply replacing individual pixel spectra by the mean su-
perpixel spectra, yielding three main advantages. First, 
measurement noise is reduced proportionally to the 
square root of the superpixel area. Second, the super-
pixelÕs boundary can help discern subtle hyperspectral 
features in otherwise bland areas. Third, reducing the 

number of spectra required for processing (in our case 
by 100 times) speeds successive algorithms and en-
ables new classes of automated analysis. Superpixels 
exploit the fact that physical surface features are spa-
tially contiguous, and spatial constraints identify popu-
lations of pixels drawn from the same feature. 

Many segmentation strategies might produce rea-
sonable superpixel segmentations. Hii-HAT utilizes 
the Felzenszwalb graph segmentation method for its 
computational efficiency and the ability to accommo-
date any spectral distance metric [2].  

Endmember Extraction:  Hii-HAT generates sev-
eral automatic summary products including superpixel-
augmented endmember extraction. By the geographic 
mixing assumption, observed reflectances are linear 
combinations of several pure endmember materials. 
These are of great interest as they represent the physi-
cally purest minerals in a scene Ð the archetypes and 
novelties that drive exploration. A noise-reduced su-
perpixel representation can improve the performance 
of classical endmember detection algorithms. Contigu-
ous spatial regions in an image are likely to contain 
similar mineralogy lending a physical interpretation to 
the shape of the endmember superpixel. 

 
Figure 1. Left: the top five single-pixel endmembers 
with associated noise corruption. Right: superpixel 
endmembers with associated mineral identification.  

Our approach uses superpixel segmentation fol-
lowed by Sequential Maximum Angle Convex Cone 
(SMACC) endmember extraction.  Recent tests com-
pared the resulting rank-ordered list of endmembers to 
expert-provided mineral spectra from salient image 
features. We compared the mean squared error of the 
best-matching spectra in both lists to determine corre-
spondence between automatically-detected and expert-



labeled constituents. For the same number of endmem-
bers, superpixel representations outperformed pixels, 
reducing error scores by a factor of 2-5 in each of the 
four images we considered. Superpixels always cap-
tured as many or more distinct mineral classes. Finally, 
the resulting noise-reduced endmember spectra provide 
a better match to the expertÕs minerals. Figure 1 evi-
dences this with the actual endmembers extracted from 
3e12 and associated expert identifications where possible.  

Interactive Unmixing:   Following endmember ex-
traction, unmixing algorithms can compute the propor-
tion that each pure constituent contributes to any image 
pixel. Hii-HAT includes tools for interactive real-time 
unmixing with Bayesian Positive Source Separation 
[3]. This avoids a problem of many least-squares algo-
rithms where optimal solutions often entail a nonzero 
contribution from all constituents. Bayesian unmixing 
can encourage ÒsparseÓ mixtures by a prior distribution 
favoring zero-value coefficients (Figure 2). 

Superpixel representations also permit more so-
phisticated and computationally complex analyses. 
Hii -HAT uses a Gibbs sampling algorithm for prob-
abilistic unmixing that computes distributions over 
mixing coefficients. This reveals not just the most 
likely proportions of the endmembers but also the un-
certainty associated with each proportion. The tech-
nique assists in interpreting features that one can ex-
plain by multiple constituents or combinations. The 
computational requirements of Gibbs sampling would 
be prohibitive if used on every pixel in a scene.  

Neutral Region Detection:  Analysts commonly 
use ÒneutralÓ spectra to compensate for atmospheric 
effects and improve spectral contrast. Dividing a  spec-
trum of interest by a bland, featureless spectrum can 
enhance features not present in the common back-
ground. Unfortunately, discovering neutral regions is a 
laborious manual process that must often be performed 
in the time-critical environment of mission planning. 
Additionally, sensitivity matching requires the same 
detectors be used for both ROIs and associated neutral 
regions.  

Hii -HAT automatically finds appropriate neutral 
regions for target ROIs in projected hyperspectral im-
ages where image columns no longer correspond to 
individual detectors. This process entails transforming 
the target ROI back to the original, unprojected image, 
detecting a neutral region within the columns shared 
by the target ROI, and reprojecting the resulting neu-
tral region. The detection step identifies spectrally 
bland regions by measuring the residual of the best-
fitting line to each superpixelsÕ spectrum. The appear-
ance of these spectra is comparable with expert-
provided neutral regions (Figures 3 and 4). 

 
Figure 2. Spectral unmixing in CRISM image 3e12 
The reconstruction explains the measurement with 
a minimal combination of potential consituents. 

 

 
Figure 3. Image 3E12. Red magnesite region is pro-
vided as target ROI. Expert-selected neutral region 
is magenta. The automated selection is green. It 
subtends the same unprojected columns as the tar-
get. 
 

 
Figure 4. Comparison of neutral spectra produced 
automatically and by hand. 
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