Hii-HAT: an IDL/ENVI Toolkit for Rapid Hyperspectral Inquiry.
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Introduction: Significant chHenges face any user
of planetary hyperspectral imagery. For the scientist,
the sheer volume of datagotudes exhaustive manual
analysis For the mission planner, the complex setbtl
ties of hyperspectrahiages are difficult to summarize
in a readily interpretable pdact. Both experts would
benefit from a rapid, robust means to create drafit mi
eralogical maps, summarize novel detections, ga-
erally draw attention to areas of interest for further
investigation. In this work we discuss the HHiAT
(Hyperspectral hage Interactive Helper and Analysis
Tools) toolset developed for the IDL/ENVI envite
ment. It attends to the specific requirerteeof plare-
tary geologists, such as low sigiieinoise ratios and a
lack of reference spectra from thefsce.

Hii-HAT incorporates several novel algorithns; i
cluding the concept of sup@xel decomposition for
noise removal and image feature enharemit a-
sists in the discovery of endmbers, forms mineral
maps through interactive unximg, and assists in the
detection of appropriate ogal regions for a given
region of interest (ROI). Here we explore its capabil
ties with magery from theCompat Reconnaissance
Imaging Spectromete(CRISM) instrument orbiting
Mars [1], sgcifically the 10002500nm wavelengths
of imageqfrt00003e12, 8158, 863e, and 3th9

Superpixels: Manual analysis often focuses dn e
ther an individual spectrum at a single gdior on the
mean spectrum of a large ROI. Thenfier approach
preserves spatial resolution but is sensitive to smea

urement noise. The later reduces noise but requires

laborious manual segmentation. Automating segazent
tion, therefore, is of great interesith the caveat that
any errors can easily averaget interesting ginals.

Many of Hii-HATOs functions exploit superpixel
representation that combines benefits from bqth a
proaches. Superpixels represent the image as centig
ous egions a few tens or hdneds of pixels in area.

number of spectra required for processing (in our case
by 100 times) speeds successive algorithms and e
ables new classes of automated analysis. 1piyss
exploit the fact that physical surface featuses sp-
tially contiguous, and spatial constraints identify pop
lations of pixels drawn from the same feature.

Many segmentation strategies might produca- re
sonable wgperpixel segmentations. HHAT utilizes
the Fézenszwalb graph segmentation method fer it
computtional efficiency and the ability to acconom
date any spectral distance metric [2].

Endmember Extraction: Hii-HAT generates se
eral automatic summary products including sppel-
augmented endmember extraction. By theggephic
mixing assumptin, observed reflectances are linear
combinations of several pure endmember anats.
These are of great interest as they represent thé-phys
cally purest mierals in a scen® the archetypes and
novelties that drive exploration. A noiseduced 8-
perpixel representation can improve the performance
of classical endmember detection algorithms. Cantig
ous spatial regions in an image are likely to contain
similar minealogy lending a physical interpretation to
the shape of the endmember gypeel.
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Figure 1. Left: the top five singlepixel endmenbers

By erring on the side of oversegmentation, superpixels With associated noise corruption. Right: aperpixel

reduce noise while preserving small signals evident in
only a few contiguous image pixels. This prepresees
ing step can improve further spectral analysis loy- si
ply replacing indvidual pixel spectra by the mean-s
perpixel spetra, yielding three main advantages. First,

endmembers with associated mineral id&ification.
Our approach uses superpixel segmentatida fo
lowed by Sequential Maximum Angle ConxeCone
(SMACC) endmember extraction Recent tests ¢o-
pared the resulting randrdered list of endmembets

measurement noise is reduced proportionally to the €xpertprovided mineralspectrafrom salient image

square root of the superpixel area. Second, thersupe
pixelOs boundary can help discern subtle hyperape
feaures in otherwise bland areas. Thirgducing the

features. Wecomparedthe mean squared error of the
bestmatching spectra in both lists to detéme core-
spmdence between automaticatiigtected and expert



labeled constituent&or the same number of endme Region of interest
bers, supepixel representations outperformed pixels, s s
reducing error scores by a factor eb2n each of the
four images we considered. Supeggts always cp-
tured as many or more distinctmaral classed=inally,
the resulting noiseeduced endmember s provide
a bettermatchto the expertOs mineralSigure 1 ei
dences this with the actual endmembextaeted from
3el2 and associatedpett identifications where gsible.

Interactive Unmixing: Following endmemberxe P ; _ '
traction, unmixing algorithms can compute the prepo T *Tite"ﬂa'c,z,:_si?e";f, Vi
tion that each pure constituent contributes to amge i
pixel. Hii-HAT includes tools for interactive retime
unmixing with Bayesian Positive Source Segiiim
[3]. This avoids a problem of many leasjuares alg-
rithms where optimal solutions often entail a nonzero
contibution from all constituents. Bayesian unmixing
can encourage OsparseO mixtures by a prior distributi
favoring zerevalue coefifcients (Figure 2).

Superpixel representations also permit mooe s
phisticated and computationally complex analyses.
Hii-HAT uses a Gibbs sampling algorithm for pro

abilistic unmixing that computes distations over g re 3. Image 3E12. Red magnesite region is pr
mixing coeficients. This reveals not just the most \ided as target ROI. Expertselectedneutral region
likely proportions of the endmembers but also the U js magenta The automated selectionis green. It

certainty associated with each proportion. Thehtec subtends the same unprojected columns as therta
nique assists in interpreting features that one can e get

plain by multiple constituents or combtions. The
computaional requirements of Gibbs sampling would HHHAT vs. Expert Neutral Region Selection
be prohibitive if used on every pixel in a scene.
Neutral Region Detection: Analysts commonly
use OneutralO spa to compensate for atmospheric % 00015
effects and improve spectral contrast. Dividing acspe
trum of interest by a bland, featureless spectrum can gooow
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Figure 2. Spectral unmixing in CRISM image 3e12
The reconstruction explains the measurement with
a minimal combination of potential consitients.

0.0044

enhance features not present in the commork-bac ‘_%0,0041
ground. Unfortunately, discovering neutragjions is a £
laborious manual process that must often bréopmed Toooto — Magnesie Rl ——
in the timecritical environment of nssion planning. - — HUHAT Neutral Spectrum
Additionally, sensitivity matching requires the same OO R0 s 0
detectors be used for both ROIs and associated neutrakigure 4. Comparison of neutral spectra produced
regions. automatically and by hand.
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