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ABSTRACT

The quantity of astronomical observations collected by today’s in-
struments far exceeds the capability of manual inspection by domain
experts. Rather than relying on human eyes to examine and analyze
all collected data, we employ data triage algorithms shortly after data
collection. Automated data triage enables increased science return
by prioritizing interesting or anomalous observations for follow-up
inspection, while also expediting analysis by filtering out noisy or
redundant observations. We describe three specific astronomical in-
vestigations that are currently benefiting from upstream data triage
techniques in their respective processing pipelines.

Index Terms— data analysis, data triage, astronomy, transient
detection, asteroid detection

1. INTRODUCTION

Today’s scientific instruments can collect data at increasingly higher
resolutions (in temporal, spatial, and spectral dimensions). The in-
crease in resolution leads directly to an increase in data volumes.
For scientific campaigns in which rare, unusual, but extremely valu-
able phenomena are present, the ability to sift quickly through large
amounts of data to find observations of interest is vital.

In astronomical applications, the primary bottleneck limiting the
amount of data that can be analyzed is the amount of human re-
viewer time available for examining observations. Automated anal-
ysis methods such as classifiers, clustering, and statistical anomaly
detection algorithms can assist by triaging data where it is collected
and prioritizing data before demanding the attention of a human ex-
pert. Rather than relying on human eyes to examine and analyze all
collected data, automated data triage allows domain experts to focus
their attention on interesting or anomalous observations and reduces
the time and effort necessary to manually filter out false detections.

We have applied this strategy to a variety of applications in
which the goal is to detect rare but scientifically valuable phenom-
ena. In this abstract, we describe three specific astronomical inves-
tigations that have benefited from automated data triage systems.
In each case, our automated data triage systems have already been
integrated into the relevant data processing and analysis pipelines.

2. OPTICAL TRANSIENT EVENT DETECTION

The intermediate Palomar Transient Factory (iPTF) is a fully auto-
mated synoptic sky survey operating since 2013 for the purpose of
detecting optical transient events such as supernovae, variable stars,
and asteroids [1]. iPTF uses the 48-inch Samuel Oschin telescope
to image large swaths of sky at a rapid cadence for transient detec-
tion, and the 60-inch Palomar telescope for multi-color follow-up of
detected candidates. By subtracting nightly-captured images from
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Fig. 1. Examples of a science (left), reference (center) and differ-
enced (left) images from the intermediate Palomar Transient Factory
(iPTF). This is a point source detection of a nova in the M31 galaxy
that was scored highly by RB4.

reference images of the sky, iPTF generates large quantities of can-
didate transient sources (≈500K-1M nightly). iPTF succeeds the
original Palomar Transient Factory (PTF) that was in operation from
2009 through 2012 [2], and differs only in science goals and data
processing. Figure 1 is an example of iPTF images of a nova from
the M31 galaxy. On the left is the science image, its associated ref-
erence (center), and the differenced image (right) that results from
subtracting the reference from the science image.

Unfortunately, the image differencing process introduces an
overwhelming number of “bogus” candidates for every candidate
source representing a real astronomical real. These are typically
caused by instrument or image processing artifacts. Automated data
triage is essential for rapid and effective science return from sky sur-
veys such as iPTF. Human scanners cannot vet the volume of nightly
detections that may number into the hundreds of thousands. Instead,
iPTF relies on an automated RealBogus system to serve as an initial
filtering step and prioritize up to 200 high-quality candidates per
night that humans will vet for follow-up analysis at iPTF Consor-
tium follow up assets. It is important that human scanners not waste
time vetting detections that are truly bogus in order to effectively
use the highly-constrained time at Consortium telescopes. In other
words, it is critical for the RealBogus systems to have a low false
positive rate, and assign high scores to true astronomical transients.

2.1. Detecting Transients and Variable Stars

The original PTF triage system, developed by Bloom et al. [3], and
its later upgrade, “RB2,” deployed by Brink et al. [4], have both
demonstrated real-time discovery of transients and variable stars.
However, upgrades to the image subtraction pipeline for iPTF al-
tered the features extracted from newly-captured imagery, in con-
trast to the PTF-based features used to train the RB2 classifier. We
demonstrate this difference in Figure 3, which shows the correlation
between the distributions of 31 features for PTF vs. iPTF real tran-
sients. Training a classifier using the PTF features exhibiting small
or negative correlation coefficients will potentially degrade classifi-
cation accuracy, as such features are not informative for the iPTF
imagery.
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Fig. 2. Data flow (simplified and updated from original diagram pub-
lished by Law et al. [2]) from the 48” telescope at Palomar Observa-
tory to the real-time image differencing pipelines at both Lawrence
Berkeley Laboratory (LBL) and Caltech. Two different “RealBo-
gus” systems are in operation, one at LBL that is trained to look
for point-source astronomical transients, specifically those in extra-
galactic fields. The second focuses on vetting “streaks” found on
differenced images as either real near-Earth object (NEO) detections,
or bogus objects such as image artifacts, cosmic rays or fast-moving
satellites.

In July 2014, we deployed a new RealBogus classifier, “RB4,”
designed specifically for iPTF imagery. We constructed a new train-
ing set consisting of 18.5K spectroscopically confirmed iPTF tran-
sients, along with an equal number of bogus candidates. Following
the methodology of Brink et al., we selected bogus candidates via
uniform random sampling from the set of unconfirmed iPTF candi-
dates. Using our new training set, we trained a random-forest clas-
sifier to distinguish between real and bogus iPTF candidates. Figure
4 compares the predicted scores produced by the RB2 classifier in
comparison to our RB4 classifier scores on an independent test set.
Scores near zero indicate bogus predictions, and scores near one in-
dicate real predictions. As Figure 4 shows, the PTF-trained RB2
classifier produces scores that are more ambiguous in comparison
to the iPTF-trained RB4 predictions that are more skewed toward
a score of one. We also discovered cases where RB2 completely
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Fig. 3. Correlation between distributions of PTF and iPTF features
for real transient sources.

missed an interesting transient. An M31 nova (pictured in Figure 1)
was missed by RB2 in July 2014. RB2 returned an average score of
0.0925 over sixteen candidate detections. RB4 predicted an average
score of 0.8775 on those detections, and would have caught the nova
had it been in operation (RB4 was deployed at iPTF on August 1,
2014).

Fig. 4. Distribution of RB2 (red) vs. RB4 (blue) scores on an inde-
pendent test set of real, spectroscopically-confirmed iPTF sources.
The iPTF-trained RB4 classifier produces fewer ambiguous predic-
tions than the PTF-trained RB2 classifier, which scores large num-
bers of these real detections below 0.7.

2.2. Near-Earth Asteroid Detection

We also developed a RealBogus classifier to detect streaking Near-
Earth Objects (NEOs). This project focuses on asteroids ranging
from 3 to 300 meters in diameter passing between 0.1 and 10 lu-
nar distances from Earth, typically moving between 10 and 100 arc-
sec/minute.1 Such NEOs are a poorly understood population of so-
lar system bodies. They are of scientific interest for the hazards they
pose, and resources they may contain. They are also key destinations
in NASA’s future plans for human spaceflight [5].

Fig. 5. Example streaking NEO candidates detected with the streak
detector (figures courtesy Adam Waszczak, Caltech).

As with the iPTF transient detection pipeline, the number of de-
tected streak candidates far exceeds manual inspection capabilities,
and many are bogus candidates representing imaging artifacts, radi-
ation hits, or periodic changes in brightness caused by fast-moving
satellites. However, unlike the iPTF pipeline, very few real candi-
dates (≈ 250) are available for training. To ameliorate this issue, (1)

1http://ptf.caltech.edu/marshals/asteroids/



supplement the training set with roughly 1500 synthetic streaks gen-
erated within the span of the real streaks’ features; and (2) augment
the feature space with morphological features for each candidate.
We then train a random-forest classifier using the real and synthetic
streaks, along with 20K randomly-selected bogus candidates. The
streaks classifier was deployed in the real-time asteroid processing
pipeline in April 2014, and it continues to detect several follow-up
worthy candidates each week, including nine confirmed streaking
NEOs at this time of this writing, while reducing the number of non-
streak detections for manual inspection by a factor of 100. Figure 5
shows three streaking NEO candidates detected by the streak detec-
tor.

3. RADIO TRANSIENT EVENT DETECTION
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Fig. 6. V-FASTR system diagram for commensal radio transient de-
tection at the VLBA. Data flows from the telescopes through the cor-
relator and is simultaneously analyzed by a machine learning detec-
tion pipeline. Full baseband data is saved for interesting candidates;
the rest is deleted to make room for new observations.

The Very Long Baseline Array (VLBA) is a distributed set of
ten 25-m radio telescopes spread across 8600 km. The array is
controlled by the VLBA Array Operations Center in Socorro, NM,
where data collected by all of the telescopes is combined using a
software correlator [6]. Because the correlator is implemented in
software, instead of hardware like older telescope arrays, we are able
to modify its operation without altering the physical hardware. Au-
tomated analysis is essential for this system given the volume of data
collected.

3.1. The V-FASTR Transient Detection System

In 2010, an international collaboration of researchers from the
Jet Propulsion Laboratory, Curtin University, ASTRON, and the
National Radio Astronomy Observatory (NRAO), implemented V-
FASTR, the VLBA Fast Transient detection system. V-FASTR
employs machine learning methods to quickly analyze radio data
collected at a 1-ms resolution across more than 100 channelized
frequency bands [7, 8]. The V-FASTR system architecture is shown
in Figure 6. Data from multiple telescopes is processed by the DiFX
software correlator to generate spectrometer data that reports signal

intensity at a range of frequencies for each time-step. The com-
mensal pipeline first reorders the spectrometer packets by time-step,
then uses a statistical (kurtosis-based) method to remove frequency
bands that are corrupted by radio frequency interference (RFI). Each
telescope’s data is separately de-dispersed, a process by which the
frequency-dependent delay induced by the interstellar medium is
reversed. The signals from all telescopes are combined and can-
didate transient events are detected. Combining information from
multiple telescopes increases the signal to noise ratio and reduces
the number of spurious detections for local events visible only to a
single telescope.

Candidate detections are archived along with derived features
describing the event such as its signal strength and dispersion mea-
sure (DM), which indicates the amount of dispersion that was re-
moved in the de-dispersion step. The DM provides information
about how far the signal has traveled, enabling us to separate local
versus astronomical events.

V-FASTR also employs a parallel pipeline that uses adaptive
excision to selectively ignore signals from individual telescopes that
may contain RFI that was not caught by the kurtosis filter. The
system periodically injects pseudo-transients with known signal
strengths into a parallel copy of the incoming data and determines
which telescopes’ data to include in the data combination and tran-
sient detection step by maximizing detection accuracy on these
known transients. The number of telescopes that are masked by this
process varies from zero to six; depending upon the current noise
conditions. Such adaptive excision further improves the precision of
the detections by preventing a large burst of RFI at a single station
from dominating the combined sum across all stations.

V-FASTR is supported by a team of human reviewers that ex-
amine the candidate detections that are found; these amount to tens
to hundreds of candidates per day. The reviewers browse the detec-
tions using a web portal that reports the latest detections and allows
them to take action on individual detections. Reviewers can discard
spurious detections, save interesting detections for further analysis,
and add content-based tags to classify detections by type. To date,
the system has accumulated more than 150,000 detections, of which
9143 have human-assigned tags.

3.2. Transient Classification in V-FASTR

V-FASTR uses a machine learning classifier to further sort detec-
tions by type in an automated fashion. The goal is to reduce the
burden of human review time by allowing reviewers to focus on the
most promising candidates first. Radio transients with an astrophys-
ical origin are rare, and without additional filtering, reviewers may
spend a lot of time rejecting subtle RFI signals that would ideally be
classified as such in an automated fashion.

Each candidate is detected in a detection time window, along
with two margin time windows before and after the detection win-
dow. Sixteen features are calculated from these three windows, re-
flecting various properties of the candidate. We trained a random
forest classifier using 7130 labeled candidates and evaluated it on a
separate collection of 2008 labeled candidates. The possible classes
were “pulsar” and three types of spurious detections: “aligned RFI”,
“single antenna detection” (SAD), and “system state switch” (SSS).
In this setting, very high reliability of the output is essential, since
the classification may ultimately be used to discard detections with-
out further review. Therefore, we only publish the top 10% most
confident pulsar classifications and the top 20% of the other three
output classes. This also allows the system to abstain from classi-
fying novel detections that do not fit into these four classes, such as



Table 1. V-FASTR transient classification performance, showing
the number of detections assigned to each class by the random forest
classifier (columns) versus the class assigned by human reviewers
(rows). Pulsars have no false or missed detections. The three spuri-
ous classes show minor confusion. Overall accuracy is 93.5%.

Predicted class: Pulsar Aligned RFI SAD SSS
Pulsar 128 0 0 0
Aligned RFI 0 39 5 6
Single Antenna Det. 0 1 47 1
System State Switch 0 3 2 51

true astrophysical transients. (We do not have enough examples of
these rare events to train a classifier directly on them.)

Table 1 compares the classes predicted by the classifier (columns)
to the true classes assigned by reviewers (rows) on the held-out test
set. The classifier output predictions for only 260 of the 2008 items
and abstained on the rest. The overall classification accuracy was
93.5%. The predictions are of very high reliability: there were
no false or missed detections for the pulsar class, and only minor
confusion among the three spurious classes. This means that if we
discard the candidates predicted to belong to these three classes, we
are unlikely to miss real pulsar events.

To date, V-FASTR has found thousands pulses from known pul-
sars and continues to operate commensally with all VLBA observing
campaigns, including those with scientific goals other than transient
detection [9]. The system continues to detect and classify new events
on a daily basis. Reviewers also contribute new tags each day, and
have the option of correcting any erroneous predictions inside the
web portal. Consequently, we re-train the classifier every day using
the latest set of tags and generate new output for all events in the
archive. The V-FASTR system thereby has the ability to improve its
performance on an ongoing basis using a steadily growing collection
of data and tags.

4. CONCLUSIONS AND FUTURE WORK

The high data volumes generated by modern astronomical surveys
demand automated data triage techniques to help astronomers iden-
tify scientifically interesting or anomalous observations. We have
demonstrated that automated data triage with statistical machine
learning techniques enables rapid science return in several optical
and radio astronomy projects. In each case, the cooperative inter-
action between astronomers and machine learning practitioners has
yielded mutual benefits, both in terms of discoveries and develop-
ment of advanced detection techniques. Such interaction facilitates
refinement of training data and features as discoveries are made, and
has played a crucial role in the success of each project. Ongoing
efforts include developing domain adaptation techniques to leverage
measurements captured by different instruments, and evaluating
deep learning methods to learn informative features directly from
instrument data.
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