
 1 

Heterogeneous Agricultural Research Via Interactive, Scalable Technology 
(HARVIST) 
ESTO Final Report: October 1, 2004 – October 27, 2006 
Submitted by Kiri L. Wagstaff, kiri.wagstaff@jpl.nasa.gov, 818-393-6393 
Co-investigators: Dominic Mazzoni (Google, Inc.) and Stephan Sain (University of Colorado, 
Denver, and the National Center for Atmospheric Research) 
Contributors: Kurt Cordle (University of Colorado), Michael Kocurek (California Institute of 
Technology), Lucas Scharenbroich (JPL, University of California, Irvine), and Tim Stough (JPL) 
 
Project Overview 
 
This project commenced on October 1, 2004.  Our goal was to integrate multiple Earth Science 
data sources into a single graphical user interface that allows for the investigation of connections 
between different variables.  In particular, we focused on relationships between weather and crop 
yield, but the system we have created is capable of integrating data for other studies as well.  The 
data sources are heterogeneous in that they contain information at different spatial, spectral, and 
temporal resolutions.  The HARVIST (Heterogeneous Agricultural Research Via Interactive, 
Scalable Technology) system provides multiple machine learning and data analysis algorithms 
that can be applied to the data.  Specifically, we include support vector machines (SVMs; 
classification), clustering (discovery), and multivariate spatial modeling (regression and 
prediction) methods.  In addition, we have greatly improved the efficiency of the component 
methods. 
 
Summary of Accomplishments 

 
1. Milestone 1:  We integrated SVM and clustering methods into the HARVIST graphical 

interface, enabling fast experimentation with either method.  An important consequence 
of having both methods in the same toolkit is that they can also share results.  For 
example, we have demonstrated the ability to cluster pixels belonging to a specific class 
as identified by an SVM.  This allows exploratory analysis (clustering) that focuses on a 
class of interest to the user (such as vegetation). 

2. Milestone 2:  We demonstrated the ability to apply our classification methods to 
continental-scale data sets by training and applying an SVM to all of North America at 
275-m resolution (1.2 gigabytes of data).  We achieved an 8x speedup using our 
previously developed Reduced Set SVM method.  This milestone signaled a system 
advance to TRL 5. 

3. Milestone 3:  We generated crop yield predictions for two crops (corn and wheat) across 
the state of Kansas (102 counties).  The lowest error in predicted yield that we obtained 
was 20% for corn and 18% for wheat.  This milestone involved the use of an SVM to 
make the predictions.  Since this milestone was achieved, we have developed two 
additional methods, which include a method for modeling spatial dependencies (MSM) 
and a spatiotemporal model (MSTM).  We found that the SVM tended to have the lowest 
prediction error, while the other models produced smoother yield estimates.  All methods 
are likely to benefit from additional data and observations. 
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4. Milestone 4:  We integrated weather data (temperature and precipitation) as an additional 
data source into our crop yield predictions.  We found that the additional information 
sometimes improved our estimates and sometimes did not. 

5. Field study.  In August, 2005, we conducted a field study to collect ground truth about 
crop types grown in central California, near Bakersfield, obtaining 384 labeled fields. 

6. Progressive Rendering for SVMs.  We developed a new classification method that allows 
the user to directly control the tradeoff between computational time invested and 
accuracy obtained, for support vector machines. 

7. Dissemination of results.  We have published three papers at conferences, established a 
project website (http://harvist.jpl.nasa.gov/), and have an upcoming invited talk and 
poster presentation planned.  In addition, we have developed a software library for use by 
the research community. 

8. Student involvement.  We have worked with two undergraduate students (Kurt Cordle, 
University of Colorado, Denver, and Mike Kocurek, California Institute of Technology) 
and a graduate student (Yongxia Kuang, University of Colorado, Denver).  They each 
contributed significantly to the project accomplishments. 

 
Detailed Progress Description 
 
1.  Milestone 1:  Integration of SVMs and clustering into the HARVIST graphical 
system 
 
One of our initial goals was to incorporate SVMs and clustering methods into the HARVIST 
graphical system.  SVMs are useful when the user has several specific classes of interest and can 
provide examples of each one.  The goal is to build a classifier that learns, from the examples 
provided, to automatically classify new data in the same way.  In contrast, clustering methods are 
useful when the classes of interest are not known, or the user wishes to identify overall trends 
present in the data set.  Instead of providing labeled examples, the user indicates only how many 
clusters (groups of similar items) should be identified.  This value, k, functions as a scale 
parameter, dictating how fine or coarse the inter-cluster resolution will be.   
 
However, we aimed for more than just the ability to run one algorithm or the other on a given 
data set.  We worked to enable the algorithms to leverage each other’s strengths by exchanging 
data and results.  Specifically, we added the ability to combine classification and clustering by 
first classifying an image, then identifying one of those classes as worthy of further exploratory 
analysis and applying clustering only to the pixels contained in the selected class.  No manual 
intervention is required between these phases; the user simply clicks “classify” and then 
“cluster” to identify the sub-regions present in the class of interest.  This process permits the user 
to focus the clustering algorithm’s attention on specific classes, without needing to analyze the 
entire image at once.  It is thereby possible to identify subtle distinctions within a class that 
would be swamped by the larger differences between classes when analyzing the entire image. 
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Figure 1 shows this scenario in action.  The left panel of the graphical interface shows the result 
of classifying pixels from a MODerate resolution Imaging Spectroradiometer (MODIS) image 
into three classes: land (black), water (blue), and vegetation (green).  The right panel shows the 
result of applying clustering only to the vegetation class.  We see that finer distinctions are 
identified, which may correspond to differences in land cover type, moisture in the soil, or other 
local conditions.  A full interpretation of the clusters requires the examination of the cluster 
centers, which summarize the overall characteristics of the pixels assigned to each cluster. 
 
2.  Milestone 2: Advance to TRL 5:  Demonstration over the continental United 
States 
 
Our second milestone was achieved via a demonstration that our data analysis toolkit can 
successfully be applied to data sets on the continental scale.  Specifically, we trained and applied 
an SVM classifier to a 1.2-gigabyte remote sensing data set and evaluated computational speed 
and classification accuracy.  The remote sensing data used for this study was collected by the 
Multi-angle Imaging SpectroRadiometer (MISR).  We assembled a mosaic that covers the 
continental United States, ranging from 70 to 130°W and 30 to 50°N, at 275 meters per pixel 
(see Figure 2).  The resulting data set contains 232 million pixels, each represented by four 
features (red, green, blue, and near infrared values), for a total size of 1.2 gigabytes. 
 
To conduct the demonstration, we labeled 100,000 pixels into one of five classes: water, cloud, 
land, cropland, or non-crop vegetation.  We identified a random subset of 5,000 labeled pixels 
for training and a disjoint subset of ~47,000 pixels to assess the accuracy of the trained classifier.  

Figure 1. The HARVIST graphical interface.  The left panel shows the output from a support vector 
machine trained to identify land (black), water (blue), and vegetation (green) pixels in California’s 
Central Valley (MODIS image).  The right panel shows the result of applying clustering to divide 
just the vegetation class into three further sub-clusters (colors indicate distinct clusters but do not 
have any assigned meaning). 

Figure 1. The HARVIST graphical interface.  The left panel shows the output from a support vector 
machine trained to identify land (black), water (blue), and vegetation (green) pixels in California’s 
Central Valley (MODIS image).  The right panel shows the result of applying clustering to divide 
just the vegetation class into three further sub-clusters (colors indicate distinct clusters but do not 
have any assigned meaning). 
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Each pixel was represented by the four feature values for all pixels in a 5x5 neighborhood; this 
helps capture useful contextual information.  As a result, each item possessed 100 features.   
 
The following table summarizes the results of this evaluation.  Using a Reduced Set SVM, we 
were able to reduce the number of support vectors in the resulting classifier from 944 to 36 and 
to obtain an 8x speedup in classification time.  The time required to classify pixels for the entire 
United States dropped from almost two days to just over five hours, with only a 2.8% decrease in 
accuracy. 
 

 
 

Preprocessing 
(find reduced set) 

Number of 
support vectors 

Classify 5x5 
degree tile 

Classify entire 
U.S. 

Speedup Accuracy 

Regular SVM N/A 944 59 minutes 47 hours N/A 88.9% 
Reduced Set SVM 13 minutes 34 7 minutes 5.5 hours 8x 86.1% 
 
3.  Milestone 3: Crop yield predictions across Kansas 
 
One of the major goals of this project has been to demonstrate the ability to provide a useful 
analysis product for the agricultural science community.  Our proof of concept is the generation 
of crop yield predictions, in terms of expected bushels per acre.  We have evaluated our ability to 
provide  predictions for the state of Kansas, at the county level, for two crops (corn and wheat, 
the two most prevalent crops in the state).  We chose Kansas due to the large amount of cropland 
present, as a fraction of total state area.   
 
We developed three different approaches to this problem, each of which have their own 
strengths.  The first method is an SVM, which is completely data-driven (no external models are 
used).  The second method, MSM, incorporates spatial dependencies via a Hierarchical Bayesian 
model.  The third method, MSTM, incorporates both spatial and temporal dependencies via a 
Markov random field. 
 

Figure 2.  MISR mosaic of data from July, 2005, across the continental U.S. 
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Support Vector Machine (SVM).  We were particularly interested in determining how early in 
the year we could make reliable yield predictions.  We want to generate predictions before the 
harvest occurs, which is at a different time in the year for each crop.  For example, corn is 
harvested in Kansas in mid-September, while the wheat we are studying is winter wheat and 
therefore harvested in mid-June.  Therefore, we trained 46 different support vector machines 
(SVMs) using different subsets of the time series available to us.  The first SVM had access only 
to the first observation, made on January 1 of each year.  The final SVM had access to all 46 
observations throughout the year, from January 1 to December 26. 
 
Figure 3 shows the relative error in our corn and wheat yield predictions for 2004 for SVMs that 
were trained on observations in 2001 and 2002.  All results are averages across all 102 counties.  
The baseline that we used for comparison (red dashed line) is the relative error obtained if we 
simply predicted that 2004 would have the same yield as was observed for 2003.  We see that 
this baseline error is much higher for wheat than for corn.  We also plot the error obtained when 
predicting yield based solely on MODIS data (black line) and when filtering the input data (black 

Figure 3.   Relative error in corn (left) and wheat (right) yield predictions for 2004 obtained 
using a support vector machine trained on MODIS time series data.  

Figure 4.   SVM predictions (top) and true yield values (bottom) for Kansas in 2004.  Corn yields 
are shown on the left, and wheat yields are shown on the right. 
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dashed line) to exclude observations with very low NDVI (Normalized Difference Vegetation 
Index) values.  Filtering is more helpful for wheat predictions than for corn.  The remaining lines 
will be discussed in the next section (Milestone 4). 
 
Figure 4 shows example yield predictions produced by the SVM for 2004, for both corn and 
wheat.  While individual county estimates are not exactly correct, the SVM is able to identify the 
overall patterns present (e.g., corn is largely produced in southwestern Kansas, and wheat is 
largely produced in northeastern Kansas).  The three dark blue counties shown in the SVM 
predictions are counties for which we had no MODIS data available.  Hence, all averages are 
reported over 102, rather than 105, counties in Kansas. 
 
Multivariate Spatial Modeling (MSM).  The data that we are analyzing has a known spatial 
component, in that neighboring observations are 
likely to be correlated.  We developed a Hierarchical 
Bayesian model (see diagram at right) to explicitly 
model dependencies between counties (for yields 
and county-level weather averages) as well as within 
counties (for observations from weather stations).  
The spatial model in the right part of this diagram 
shows how historical averages connect to state-wide 
averages, which influence county averages, which 
are connected to the actual observations: MODIS 
data, weather station data, and crop yield data.  The 
regression model on the left part of the diagram 
illustrates the model for crop yields.  The yields are 
predicted by a linear regression on the county-level 
data.  We fixed the correlations between neighboring 
counties to be proportional to the average distance 
between all pair-wise points in each county.   
Correlation among each pair of weather stations was set to be proportional to their pairwise 
distance.  To obtain a yield prediction, we generated several thousand samples from the posterior 
distribution of the county yield and took the expected value as our prediction.  
 
Each arrow in the model represents a conditional distribution.  All of the information necessary 
to evaluate a given node is provided by the node’s parents, its children, and its children’s parents.  
As is typical in Bayesian models, we specify the parametric form of each conditional distribution 
according to our modeling choices and in order to make the problem tractable. 
  
Spatial Model. The spatial component of the model is a Normal-Normal hierarchical model, 
which means that each level of the model (stations, counties and state) is modeled using a 
Normal (Gaussian) distribution.  This ensures that the model is conjugate, which implies that 
every posterior conditional distribution in the model is also a Normal distribution and the 
parameters of the distribution, the mean and covariance, have a closed form solution.  This 
analytic tractability is an important detail that decreases the computational cost of the model so 
that it can scale up to model all of the counties in a state simultaneously. 
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Another key modeling innovation in our model is that we impose a shared structure among the 
counties.  Abstractly, the full dependence structure requires tracking a number of variables equal 
to the number of observations per county times the number of counties.  In the case of Kansas, 
there are 105 counties with 184 features (46 temperature, 46 precipitation and 92 MODIS), 
which would require almost 1.5 gigabytes of memory to model.   By imposing a blocked 
structure, we are able to reduce the amount of memory needed by several orders of magnitude. 
 
In addition to reducing the amount of space needed for the MSM, our factorization also enables 
all of the necessary sampling operations to be evaluated efficiently, resulting in another order of 
magnitude savings in computational time. 
 
Regression Model.  The regression model is set up as a simple linear regression model where 
the observed county yields are regressed against the estimated county-level aggregated feature 
vector.  Notice that the regression coefficients lie outside of the nested boxes of the spatial 
model.  This indicates that there is a single set of regression coefficients that are shared across all 
counties over all years.  The motivation for this structure is that we expect the observed features 
to have a deterministic (up to uncertainty) relationship to the crop yield.  Succinctly, if we 
observe identical data in two different years, we expect the crop yields to be identical (up to 
uncertainty). 
 
When we apply this model to the observed data from 2001 and 2002 to predict 2004 yields, we 
find that predictions made by this model do not improve as more observations are available over 
the year.  Prediction error remains relatively constant.  This may be due to the linear regression 
technique used, which has more difficulty fitting data with higher dimensionality.  However, a 
regular linear regression applied to the same data experiences a dramatic increase in error due to 
this dimensionality effect.   The spatial priors may compensate for this effect. 
 
Multivariate SpatioTemporal Modeling (MSTM).  There is a third dimension that is relevant 
in our data.  In addition to spatial dependencies, there also 
exist temporal dependencies.  We developed a model that can 
encode these dependencies as well, connecting observations 
from this year with those observed at the same location last 
year (see diagram at right; time moves from bottom to top).  
These relationships are specified with a Markov Random 
Field.  Given the spatiotemporal model, we again perform a 
linear regression and sample from the posterior to obtain a 
conditional mean estimate.  This particular MSTM permit us 
to jointly estimate corn and wheat yield simultaneously. 
 
We find that predictions made using this model also tend to have a higher average relative error.  
However, they also produce a wider spread in terms of possible predicted values.  For example, 
in the figure at right (next page), total corn yield is shown on the y-axis and total wheat yield is 
shown on the x-axis (total yield values are the total estimated crop, in bushels, rather than the 
yield per acre).  The solid lines show the true yields observed for each crop, in 2004.  The red 
dots specify the yield predictions obtained when using a regular regression, with no spatial or 
temporal dependencies specified (“independent model”).  The blue dots indicate predictions 
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obtained from the spatiotemporal model.  We 
observe that the independent model produces more 
tightly clustered predictions (lower variance), but 
that it rarely (for corn) and never (for wheat) gets 
close to the true yield values.  In contrast, the MSTM 
predictions are more widely dispersed, but a small 
(for corn) and a significant (for wheat) fraction of 
them occur near the true yield values.  This suggests 
that the MSTM, because it has access to more 
background knowledge, is less susceptible to 
overfitting the few years of data we have to train 
from.  The MSM exhibits similar behavior. 
 
Our general conclusion from these experiments is 
that the SVM can provide the best predictions when the amount of training data is limited.  We 
would like to perform the same experiments when additional years of data are available.  
However, the MSM and MSTM offer a significant advantage in that they provide uncertainty 
estimates in their predictions, which is critical for any fielded use of these predictions. 
  
4.  Milestone 4: Incorporation of weather data into crop yield predictions 
 
Our goal for this milestone was to integrate the weather observations with the MODIS remote 
sensing data.  We collected weather observations from all stations in California and Kansas, from 
2000-2005, from the National Climatic Data Center (NCDC).  The data set contains daily 
observations of temperature, pressure, precipitation, etc., for 106 stations in California and 28 
stations in Kansas.  We need some information (an observation or estimate) of the weather 
values in each county, but weather stations are not distributed evenly across the state, and there 
are several counties that have no observations at all.  Therefore, we used kriging to interpolate 
the observations across each state, using a Gaussian covariance prior.  Figure 5 shows the kriged 
weather data for Kansas on day 178 of 2000.  The smoothed weather field permits us to obtain 
weather estimates across the entire state for each day, with an associated uncertainty estimate, 
shown in the standard deviation plots.  The uncertainties are largest for areas with few true 
observations, and more confident for areas with a higher density of observations. 
 
The results obtained by the SVM, when incorporating the additional weather source (temperature 
and precipitation) are shown in Figure 3.  We observe that using both weather and remote 
sensing data (blue line) tends to provide better estimates than when using weather data alone 
(green line).  The fact that the green line is so flat over time suggests that those inputs may not be 
as relevant for yield prediction.  We find that using both inputs can be helpful for corn yield 
predictions, but it is a detractor for wheat yield predictions.  This may be a result of different 
farming practices; if wheat is primarily watered via irrigation, then precipitation is far less 
relevant to its growth (and eventual harvest). 
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5.  Central California field study 
 
On August 2, 2005, we conducted a field study in the Bakersfield area of central California.  The 
goal of the field study was to collect information about crops currently being grown that we 
could match up with concurrent remote sensing data.  We used this data set to train and validate 
the crop type classifier that we constructed during the first quarter of FY’06.  We surveyed 384 
crop fields and, for each one, recorded the latitude, longitude, and crop type being grown.  We 
also took digital pictures of the majority of the fields for later reference.  Crops in our data set 
with less representation include alfafa, almonds, watermelon, tomatoes, wheat, and red peppers.  
We also collected observations of uncultivated fields and urban areas.  It was not possible to 
collect an evenly distributed sample of fields, due to fences and warnings against trespassing on 
private land.  Therefore, our sample is biased in that we were restricted to fields that were near 
roads or highways.  We were nevertheless able to collect a diverse sample of crops that was 
sufficient for our crop type classifier development.   
 
6.  Progressive rendering for support vector machines 
 
Support vector machines (SVMs) have good accuracy and generalization properties, but they 
tend to be slow to classify new examples.  In contrast to previous work that aims to reduce the 
time required to fully classify all examples, we developed a method that provides the best-
possible classification given a specific amount of computational time.  This approach is 
analogous to the progressive rending of GIF or JPEG images as they are downloaded over the 
Internet.  During preprocessing, we construct two SVM classifiers: a “full” SVM that is 
optimized for high accuracy, yet may be slow, and a reduced-set SVM that provides extremely 
fast, but less accurate, classifications.  We apply the reduced SVM to the data set, estimate the 
posterior probability that each classification is correct, and then use the full SVM to reclassify 
items in order of their likelihood of misclassification.  Figure 6 shows an example of this hybrid 
approach applied to a scene observed by the Multi-angle Imaging Spectroradiometer (MISR).  

Figure 5.   Kriged estimates of temperature and precipitation for the state of Kansas (day 178, 
2000).  Black x’s mark actual observations at weather stations; the remaining values are 
interpolated based on a Gaussian prior.  Lower plots show uncertainty associated with each value. 
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The first result contains some errors but is obtained almost instantaneously.  The final result 
requires 247x more processing time.   
 
A major benefit of this advance is that, in interactive applications such as our graphical interface 
to the HARVIST system, a user can specify what the relative importance of speed and accuracy 
should be.  In an exploratory phase, users can indicate that a fast, coarse estimate of the final 
output is sufficient.  When final, polished results are desired, users can indicate that the SVM 
should use as much time as is needed to fully classify the image.  We have incorporated this new 
functionality into the graphical system. 
 
7.  Dissemination: Publications and Presentations 
 
Over the course of this project, we have worked actively to disseminate the results we have 
obtained over the course of this project.  We published three papers at conferences, established a 
project website (http://harvist.jpl.nasa.gov/), and have an upcoming invited talk and poster 
presentation planned.  An additional paper is currently under review.  (See the end of this report 
for full paper citations.) We also have a journal paper in preparation, titled “Progressive 
Rendering for Support Vector Machines,” which we will submit to the Data Mining and 
Knowledge Discovery (DMKD) journal.  Finally, we have put together a software library that 
includes all of the multivariate spatiotemporal modeling methods that were developed under the 
auspices of this project.  The software library is in R.  It will be made available from the 
HARVIST website (http://harvist.jpl.nasa.gov/) and the central R community archive (). 
 
8.  Summer Student Projects 
 
Over the course of this project, we have worked with four students on this project (see Figure 7). 
• Kurt Cordle is now a senior in Applied Mathematics at the University of Colorado, Denver.  

He implemented methods for outlier detection that allow us to automatically exclude missing 
or cloudy pixels in the remote sensing data, or data gaps in weather or other data sources.  He 
also contributed to the analysis of the Kansas data used to derive crop shape models.  

• Mike Kocurek is now a senior in Computer Science at the California Institute of 
Technology.  During the summer of 2005, he implemented and tested several efficiency 

Figure 6.  Progressive rendering for an SVM as applied to a MISR image.  Classes are 
smoke (yellow), land (brown), water (blue), cloud (white), and snow/ice (cyan). 

Fast MISR RGB Slow (247x slower) Intermediate 
(50% reclassified) 
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advances for clustering and support vector machine methods that enable the application of 
these methods to very large data sets.  He also assisted with our crop type data gathering 
effort in central California.  He was named a Semi-Finalist in the Doris S. Perpall Speaking 
Competition on the basis of his talk describing his work with this project.  In 2006, he 
developed the progressive rendering approach described above and integrated it into the 
HARVIST system.  He also implemented an optimal hyperparameter search for the SVM 
crop yield estimation experiments.   

• Yongxie Kuang is a graduate student in Applied Mathematics at the University of Colorado, 
Denver.  She is working on her Master’s degree.  She has investigated spatiotemporal 
modeling methods for interpolating spatial fields, such as the missing values that arise in 
remote sensing data when cloudy or snowy pixels are detected and removed. 

• Lucas Scharenbroich is a graduate student in Information and Computer Sciences at the 
University of California, Irvine.  He implemented the dimensionality reduction methods 
described above and incorporated them into the HARVIST system.  He also implemented an 
ENVI data format reader for HARVIST, which is significant due to this data format’s wide 
popularity in a variety of science fields. 

 
Schedule Status 
 
The HARVIST project has completed all milestones on or ahead of schedule. 
 
TRL Assessment 
 
This project started out at TRL 4.  The HARVIST system achieved TRL 5, as interpreted for 
software systems, after being tested on "realistic data" in its "final environment" (September 30, 
2005).  In this case, we applied the trainable classifier algorithm (SVM) in HARVIST to remote 
sensing data covering the continental U.S. (232 million pixels) and demonstrated several of the 
efficiency improvements we have developed, for clustering and SVM algorithms.  The project 
achieved an advance to TRL 6 in October, 2006, when we successfully demonstrated the ability 
to incorporate multiple data sources (remote sensing and weather station data) into a single 
prediction effort. 
 

Figure 7.  Summer students who contributed to the HARVIST project:  
Mike Kocurek and Lucas Scharenbroich.  Not pictured: Kurt Cordle, Yongxie Kuang. 



 12 

To achieve TRL 7:  We view TRL 7 as a deployment of the HARVIST system for personal use 
by scientists.  We have an opportunity to do just that: one consequence of our meeting with three 
soil scientists from the USDA in December, 2006, has been the continued interest on their part in 
using HARVIST for an upcoming soil salinity study.  Successfully infusing the technology 
demonstrated in this task by enabling them to use it for their own science goals would achieve 
TRL 7.  We estimate that the additional effort required to do this would be approximately 6 
months of effort and $75K to support labor. 
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