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Introduction: The Mars community is moving
towards an exploration strategy that involves more
regular launches of small spacecraft. Such a strategy
could dramatically advance our understanding of
surface-atmospheric conditions and phenomena (e.g.,
of dust devils and dust lofting) and a broader collection
of surface observations would inform both past and
present climate processes [l1] as well as surface
operations. However, this will present an engineering
challenge as resources on small landers (e.g., power
and data bandwidth) would be much more constrained
compared to previous Discovery- and Flagship-class
missions. One way to mitigate this issue is through
adaptive sampling — autonomously change data
collection in response to the science environment.
Compared to continuous or  pre-scheduled
observations, the capability to respond to the
environment allows missions more efficiently spend
resources when it’s most scientifically valuable [2-5].
Such schemes are especially important for
investigations of rare, transient phenomenon, such as
Martian wind vortices (including dust devils).

Toward this goal, we developed algorithms to
identify vortices in real time pressure timeseries data.
Deployment of such algorithms on a future mission
would enable a lander to trigger high volume data
collection at the first sign of a vortex and stay in a
quiescent, monitoring state otherwise (saving
resources). Using existing Mars rover observations, we
seek to quantify the science return achieved and
power/data savings with this approach compared to
conventional observation schemes. Once complete, this
information can be used to inform future small lander
mission concepts.

Detection = Methodology: We  developed
computationally light models (meant for onboard use)
to detect dust devils in 1 Hz pressure sensor data from
the M2020 Mars Environmental Dynamics Analyzer
(MEDA [6]). Previous studies have analyzed the
pressure sensor data (along with other sensors) to
identify nearby dust devils, which appear as dips in
pressure signal [7] with varying durations (Figure 1).
Using these results as ground truth, we developed four
algorithms to identify dust devils from real-time
observations as early in the encounter as possible, with
the timescale of the encounter represented as the start
of the full-width-half-max (FWHM) window of the
pressure dip. Observations triggered before the FWHM
window are of high importance as wind, camera,

and/or dust sensor observations during this window are
required to accurately assess the dust flux.
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Figure 1. Vortex events span a range of pressure
deviations, durations, and shapes. Three examples of
vortex-related pressure dips are shown in the insets.

Statistics-based detectors. We developed two
statistical-based detectors; the simple approach fits a
normal distribution to the observed distribution of
pressure deviations. Deviations large enough to exceed
a tunable threshold (e.g., a large dip) trigger detections.
The second statistical method adaptively tunes a
threshold in a sliding window. It fits a line to historical
data (previous 1000 seconds), uses this to detrend the
data (subtracting the best fit line), and fits a normal
distribution to the residual. As before, a tunable
threshold is set on this distribution, which triggers
when exceeded (Figure 2).
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Machine learning-based detectors. We also tested
two machine learning architectures: a long short-term
memory (LSTM) model and a transformer model. For
both, we used overlapping 60-second windows of
pressure sensor data as input paired with ground truth
labels indicating whether or not the final data point fell
within the 4x FWHM window of a vortex. A standard
80/20 train/test split was used along with 5-fold cross-
validation to identify the best model hyperparameters.
The models generated a confidence value on the
interval [0, 1], which was also used with a threshold to
generate binary detections.

Detection Evaluation. We assessed the efficacy of
the models in two ways. First, we evaluated their
ability to identify whether each timepoint fell within
the 4x FWHM window using detection-error tradeoff
curves (Figure 3). This indicates how well each
detector performed in identifying vortices in pressure
data irrespective of exact timing. Second, we evaluated
how early each model identified dust devils relative to
the FWHM window — triggering before the FWHM
window is desired to maximize science, but we also
tracked near misses (triggering during the FWHM,;
Figure 4). Overall, the ML-based approaches tended to
perform better, but future work is needed to assess the
tradeoff between the power required to run each
algorithm and detection performance (as the ML
models will likely require more resources).
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Figure 3. Point prediction performance for all

detectors. By tuning confidence over a range of

thresholds, ground teams can tune the expected
balance of false positive vs. false negatives.

Assessing Science Value and Power: With the
detector evaluation recently completed, our next steps
are to assess the simulated science return for each
algorithm. This analysis will use each detector’s vortex
triggers to quantify how the timing of each detection
would impact the inferred dust flux and related
uncertainties had each been deployed on M2020. The
science value will be compared with power and data

volume needs for each algorithm to assess tradeoffs.
We anticipate having early results in the coming weeks
(in time for LPSC) and then plan to submit the results
to a Planetary Science Journal focus issue [8] to
inform small lander mission concepts to Mars.
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Figure 4. Vortex event detections for all four detectors
using a tight filter (high trigger threshold). Different
models tend to capture different types of vortices.
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