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Introduction:  The Mars community is moving 

towards an exploration strategy that involves more 
regular launches of small spacecraft. Such a strategy 
could dramatically advance our understanding of 
surface-atmospheric conditions and phenomena (e.g., 
of dust devils and dust lofting) and a broader collection 
of surface observations would inform both past and 
present climate processes [1] as well as surface 
operations. However, this will present an engineering 
challenge as resources on small landers (e.g., power 
and data bandwidth) would be much more constrained 
compared to previous Discovery- and Flagship-class 
missions. One way to mitigate this issue is through 
adaptive sampling – autonomously change data 
collection in response to the science environment. 
Compared to continuous or pre-scheduled 
observations, the capability to respond to the 
environment allows missions more efficiently spend 
resources when it’s most scientifically valuable [2-5]. 
Such schemes are especially important for 
investigations of rare, transient phenomenon, such as 
Martian wind vortices (including dust devils). 

Toward this goal, we developed algorithms to 
identify vortices in real time pressure timeseries data. 
Deployment of such algorithms on a future mission 
would enable a lander to trigger high volume data 
collection at the first sign of a vortex and stay in a 
quiescent, monitoring state otherwise (saving 
resources). Using existing Mars rover observations, we 
seek to quantify the science return achieved and 
power/data savings with this approach compared to 
conventional observation schemes. Once complete, this 
information can be used to inform future small lander 
mission concepts. 

Detection Methodology: We developed 
computationally light models (meant for onboard use) 
to detect dust devils in 1 Hz pressure sensor data from 
the M2020 Mars Environmental Dynamics Analyzer 
(MEDA [6]). Previous studies have analyzed the 
pressure sensor data (along with other sensors) to 
identify nearby dust devils, which appear as dips in 
pressure signal [7] with varying durations (Figure 1). 
Using these results as ground truth, we developed four 
algorithms to identify dust devils from real-time 
observations as early in the encounter as possible, with 
the timescale of the encounter represented as the start 
of the full-width-half-max (FWHM) window of the 
pressure dip. Observations triggered before the FWHM 
window are of high importance as wind, camera, 

and/or dust sensor observations during this window are 
required to accurately assess the dust flux. 

 
Figure 1. Vortex events span a range of pressure 

deviations, durations, and shapes. Three examples of 
vortex-related pressure dips are shown in the insets. 

 
Statistics-based detectors. We developed two 

statistical-based detectors; the simple approach fits a 
normal distribution to the observed distribution of 
pressure deviations. Deviations large enough to exceed 
a tunable threshold (e.g., a large dip) trigger detections. 
The second statistical method adaptively tunes a 
threshold in a sliding window. It fits a line to historical 
data (previous 1000 seconds), uses this to detrend the 
data (subtracting the best fit line), and fits a normal 
distribution to the residual. As before, a tunable 
threshold is set on this distribution, which triggers 
when exceeded (Figure 2).  

 
Figure 2. Adaptive 

distribution fit of the 
pressure timeseries 

data to mean-
subtracted pressure 

data (top) can be 
used to estimate the 

probability of an 
ongoing anomaly 
(e.g., a dust devil). 

Detection of a vortex 
event is triggered 

when a probabilistic 
threshold is exceeded 

(bottom). 



Machine learning-based detectors. We also tested 
two machine learning architectures: a long short-term 
memory (LSTM) model and a transformer model. For 
both, we used overlapping 60-second windows of 
pressure sensor data as input paired with ground truth 
labels indicating whether or not the final data point fell 
within the 4x FWHM window of a vortex. A standard 
80/20 train/test split was used along with 5-fold cross-
validation to identify the best model hyperparameters. 
The models generated a confidence value on the 
interval [0, 1], which was also used with a threshold to 
generate binary detections. 

Detection Evaluation. We assessed the efficacy of 
the models in two ways. First, we evaluated their 
ability to identify whether each timepoint fell within 
the 4x FWHM window using detection-error tradeoff 
curves (Figure 3). This indicates how well each 
detector performed in identifying vortices in pressure 
data irrespective of exact timing. Second, we evaluated 
how early each model identified dust devils relative to 
the FWHM window – triggering before the FWHM 
window is desired to maximize science, but we also 
tracked near misses (triggering during the FWHM; 
Figure 4). Overall, the ML-based approaches tended to 
perform better, but future work is needed to assess the 
tradeoff between the power required to run each 
algorithm and detection performance (as the ML 
models will likely require more resources). 

 
Figure 3. Point prediction performance for all 
detectors. By tuning confidence over a range of 
thresholds, ground teams can tune the expected 

balance of false positive vs. false negatives. 
 

Assessing Science Value and Power: With the 
detector evaluation recently completed, our next steps 
are to assess the simulated science return for each 
algorithm. This analysis will use each detector’s vortex 
triggers to quantify how the timing of each detection 
would impact the inferred dust flux and related 
uncertainties had each been deployed on M2020. The 
science value will be compared with power and data 

volume needs for each algorithm to assess tradeoffs. 
We anticipate having early results in the coming weeks 
(in time for LPSC) and then plan to submit the results 
to a Planetary Science Journal focus issue [8] to 
inform small lander mission concepts to Mars. 

 
Figure 4. Vortex event detections for all four detectors 
using a tight filter (high trigger threshold). Different 

models tend to capture different types of vortices. 
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