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Schemes 1 & 2: Statistical Models
Goal: Generate a distribution that separates background and 
vortex pressure changes. Use either a static or adaptive 
distribution in concert with a tunable threshold. 

Schemes 3 & 4: Machine Learning
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Rethinking Data Acquisition on Small Spacecraft

To capture rare phenomena like dust devils, new algorithms are needed to respond to events in real time. Traditional, pre-
scheduled observational schemes are likely to: miss high-value events if observations are too sparsely collected, and/or 
exceed bandwidth or power availability with continuous observations (i.e., small spacecraft [1,2]). Any capability that 
addresses these concerns could improve scientific outcomes; we focus on quantifying the contribution of rare dust vortices to 
the Martian dust budget.

Spacecraft with an adaptive sampling strategy could address these issues [3], but research is needed to understand the 
technical capabilities and a priori knowledge that would enable such algorithms. We conducted a proof-of-concept study that:

• Developed and tested 4 science autonomy methods for detecting Martian convective vortex on real M2020 data [4]

• Demonstrates that real-time detectors can conserve power and data volume until an event of interest is detected 

• Generated science outcomes quantitatively similar despite highly constrained use of simulated resources

Research Objectives and Approach

Vortices and Their Contribution to the Dust Budget

The contribution of dust devils to the Martian dust 
budget is important but remains poorly understood. 
Determining how much dust devils contribute 
depends on the dust flux (Q) from each individual 
vortex [5]. 
 Lab work suggests Q depends on the pressure 
excursion at the vortex’s center as 𝑄 ∝ Δ𝑃𝑐

𝛾. Thus, 
large uncertainties 𝜎𝛾 on 𝛾  translate into large 
uncertainties 𝜎Σ𝑄on the population-weighted dust 
flux Σ𝑄 (Figure 2). 

Analyzing pressure data (e.g., from rovers) to 
accurately determine vortex pressure excursions 
(𝜸) is critical to assessing their role in the Martian 
dust budget.

Figure 2. Relationship between the 
signal-to-noise ratio (SNR) for the 
population-weighted dust flux (Σ𝑄/𝜎Σ𝑄) 
and the SNR for the individual vortex 
contribution. As SNR on 𝛾 increases, the 
SNR on the population-weighted dust flux 
increases, improving our understanding.

Figure 4. Statistical 
distribution fits to observed 
pressure deviations without 
(top) and with (bottom) a 
vortex. From these, we 
estimate the probability that 
an observed pressure change 
is not “background.” If this 
probability exceeds a 
threshold parameter, the 
algorithm triggers a vortex 
detection. Here, we use a 
normal distribution to 
determine that probability.

Figure 6. Change in 
pressure (blue) and 
LSTM model probability 
(red) illustrate a 
positive detection 
(prob. > 0.9) during to 
60 seconds prior to the 
FWHM window (red 
shaded region).

Goal: Train time-series-based ML models. Evaluate both a 
recurrent neural network (LSTM) and a modern transformer 
(single-headed) architectures.

Toward Power- and Data-Efficient Small Landed Missions: 
Detecting and Characterizing Martian Dust Devils

Figure 1. We aim to quantify how science autonomy algorithms can increase the ratio of science returned vs. 
resources used (power and data). Our current project status is indicated by the dashed red box. We plan to 
complete this work and submit a paper by the end of May, so stay tuned! And feedback is welcomed.
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We assume two observation modes: 
1. Monitor mode: Constantly on / Low resource: pressure 

sensor.
2. Alert Mode: Limited duration post-trigger / High resource: 

wind sensors, cameras, and pressure sensor.

For each detector, we can tune:
1. Detection threshold: Lower thresholds capture more 

events, but require more power and data volume
2. Alert mode cooldown: Longer cooldown times record 

more data but require more power and data volume

Fractional Science 
Value: Number of 

vortices detected and 
their science 

characterization

• Quantify science value vs. 
resource usage for different 
observation schemes

• Derive engineering 
guidance to maximize 
science value within a 
given resource envelope 
and available a priori 
environment knowledge

Research Algorithm: 

All measurements 
from monitor mode + 
measurements from 
alert mode (during 

detected events)

Research Objectives

Figure 5. A rolling normal 
distribution is fit to the 
pressure signal (after fitting 
and subtracting a simple linear 
model). Top: After subtracting 
a simple linear model, we fit a 
normal distribution (visualized 
with shaded gray regions) and 
check for extreme values to 
trigger a detection. The ideal 
detection window is shaded in 
red. Bottom: Probability of a 
vortex is visualized with a 
dashed line for a detection.

Figure 3. Vortices measured by M2020 
vary in terms of pressure deviations and 
durations. Most tended to have a small 
pressure deviation (<1Pa) and short 
duration (<50s, lower left). But there are 
also short duration, high pressure 
deviations vortices (top left) and long 
lasting, small deviation vortices (bottom 
right). 

To best understand the Martian dust 
budget, vortex detection algorithms 
must capture vortices ranging in 
strength and duration.

Detector Evaluation and Science Outcomes

Figure 8. The 
transformer’s attention 
scores (orange) 
indicate which points 
are most important in 
the probability 
assigned at each 
timepoint (here at time 
of detection). Data 
directly leading up to 
the detection as well as 
two contextual points 
carried high 
importance.

Figure 10. Performance of all 
detectors as a function of false 
positives vs false negatives. ML-
based methods is moderately better 
than statistics-based ones. For all 
approaches, ground teams can tune 
the detector’s confidence threshold 
(see shaded blue dots) to reach the 
desired balance of false positives 
and false negatives.

Figure 9. Vortex detection performance for all four detectors (columns) 
for tight and loose filters (rows) over vortices in the test set. 
Performance varies according to the vortex characteristics described in 
Figure 3. Markers indicate true positives (trigger before FWHM), near 
misses (trigger during FWHM) and misses (missing trigger) as well as 
percentage of test vortices in each of those categories

Figure 7. Similar to 
the above figure but 
for single-headed 
transformer model. 
Both the LSTM and 
transformer 
performed 
similarly.
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Figure 11. Total dust contributions inferred from the vortices 
detected by each detector, as compared to the total dust inferred 
from the original population of vortex encounters from Mars 2020 
[4]. Even with a strict filter returning only 5% of the autonomously 
selected data, most detectors return vortex populations within a 
factor of 2-3 of the original population, though the adaptive one 
underestimates by a factor of ~5. Looser filters and additional 
detector improvements are expected to improve their performance. 

• We trained statistical and ML detectors to identify 
Martian vortices in pressure time-series data.

• The detectors identified and selectively triggered during 
vortices, reducing data by 95% while retaining our key 
science metric w/in a factor of 2.

• Future work will focus on refining the algorithms and 
benchmarking each detector on flight computers.

Takeaways
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