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Abstract. Clustering with constraints is an active area of machine learn-
ing and data mining research. Previous empirical work has convincingly
shown that adding constraints to clustering improves performance, with
respect to the true data labels. However, in most of these experiments, re-
sults are averaged over different randomly chosen constraint sets, thereby
masking interesting properties of individual sets. We demonstrate that
constraint sets vary significantly in how useful they are for constrained
clustering; some constraint sets can actually decrease algorithm perfor-
mance. We create two quantitative measures, informativeness and coher-
ence, that can be used to identify useful constraint sets. We show that
these measures can also help explain differences in performance for four
particular constrained clustering algorithms.

1 Introduction

The last five years have seen extensive work on incorporating instance-level con-
straints into clustering methods [1,2,3,4,5]. Constraints provide guidance about
the desired partition and make it possible for clustering algorithms to increase
their performance, sometimes dramatically. Instance-level constraints specify
that two items must be placed into the same cluster (must-link, ML) or different
clusters (cannot-link, CL). This semi-supervised approach has led to improved
performance for several UCI data sets as well as for real-world applications, such
as person identification from surveillance camera clips [5], noun phrase corefer-
ence resolution and GPS-based map refinement [6], and landscape detection from
hyperspectral data [7].

Constraints can be generated from background knowledge about the data
set [6,8] or from a subset of the data with known labels [1,2,3,4,5]. Based on
the strong positive empirical results that have been reported, the opinion of the
community is that constraints help improve clustering performance with respect
to accuracy, as measured on the set of extrinsic labels used to generate the con-
straints. While we might expect that different constraint sets would contribute
more or less to improving clustering accuracy, we have found that, surprisingly,
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some constraint sets actually decrease clustering performance. We present exper-
imental evidence of this phenomenon in Section 2. We observe that constraints
can have ill effects even when they are generated directly from the data labels
that are used to evaluate accuracy, so this behavior is not caused by noise or
errors in the constraints. Instead, it is a result of the interaction between a given
set of constraints and the algorithm being used.

The two major contributions of this work are:

1. The first explicit identification of the adverse effects constraints can have on
the clustering process, and

2. The first attempt to characterize constraint set utility to explain clustering
performance.

The key question that this work addresses is: Why do some constraint sets in-
crease clustering accuracy while others have no effect or even decrease accuracy?
We propose two measures, informativeness and coherence, that capture relevant
properties of constraint sets (Section 3). These measures provide insight into the
effect a given constraint set has for a specific constrained clustering algorithm.
In experiments on several data sets, we find that in general, constraint sets with
high informativeness and coherence are most beneficial, and that this trend holds
for four different algorithms (Section 4). Finally, we use the CMU Face Images
data set [9] to show visual examples of informative and coherent constraint sets.

2 Motivation: Constraints Can Decrease Performance

The operating assumption behind all constrained clustering methods is that
the constraints provide information about the true (desired) partition, and that
more information will increase the agreement between the output partition and
the true partition. Therefore, if the constraints originate from the true partition
labels, and they are noise-free, then it should not be possible for them to decrease
clustering accuracy. However, as we show in this section, this assumption does
not always hold.

The experimental methodology adopted by most previous work in constrained
clustering involves generating constraints by repeatedly drawing pairs of data
points at random from the labeled subset (which may be the entire data set).
If the labels of the points in a pair agree, then an ML constraint is generated;
otherwise, a CL constraint is generated. Once the set of constraints has been
generated, the constrained clustering algorithm is run several times and the
average clustering accuracy is reported. Learning curves are produced by re-
peating this process for different constraint set sizes, and the typical result is
that, on average, when more constraints are provided, clustering accuracy in-
creases [1,2,3,4,5,6,7,8]. However, the focus on characterizing average behavior
has obscured some interesting and exceptional behavior that results from spe-
cific constraint sets. In this work, we will empirically demonstrate such cases and
provide insight into the reasons for this behavior.

We begin by examining the behavior of four different constrained clustering
algorithms on several standard clustering problems. The two major types of
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Table 1. Average performance (Rand Index) of four constrained clustering algorithms,
for 1000 trials with 25 randomly selected constraints. The best result for each algo-
rithm/data set combination is in bold.

Algorithm
CKM PKM MKM MPKM

Data Set Unconst. Const. Unconst. Const. Unconst. Const. Unconst. Const.

Glass 69.0 69.4 43.4 68.8 39.5 56.6 39.5 67.8
Ionosphere 58.6 58.7 58.8 58.9 58.9 58.9 58.9 58.9

Iris 84.7 87.8 84.3 88.3 88.0 93.6 88.0 91.8
Wine 70.2 70.9 71.7 72.0 93.3 91.3 93.3 90.6

constrained clustering techniques are (a) direct constraint satisfaction and (b)
metric learning. The techniques of the first category try to satisfy the constraints
during the clustering algorithm; the latter techniques treat an ML (or CL) con-
straint as specifying that the two points in the constraint and their surrounding
points should be nearby (or well separated) and tries to learn a distance metric
to achieve this purpose. We evaluated an example of each kind of algorithm as
well as a hybrid approach that uses both techniques:

– COP-KMeans (CKM) performs hard constraint satisfaction [1].
– PC-KMeans (PKM) performs soft constraint satisfaction (permits some con-

straints to be violated) [4].
– M-KMeans (MKM) performs metric learning from constraints, but does not

require that the constraints be satisfied [4].
– MPC-KMeans (MPKM) is a hybrid approach, performing both soft con-

straint satisfaction and metric learning [4].

Table 1 compares the results (averaged over 1000 trials) for each algorithm
in terms of its unconstrained and constrained performance, when provided with
25 randomly selected constraints. We evaluated these algorithms on four UCI
data sets [10]: Glass (n = 214), Ionosphere (n = 351), Iris (n = 150), and Wine
(n = 178). Clustering performance was measured in terms of the Rand Index [11].
The Rand Indices of the unconstrained algorithms differ (e.g., 69.0% for CKM
vs. 43.4% for PKM on the Glass data set) because of variations such as different
cluster centroid initialization strategies and data pre-processing. In general, as
expected and previously reported [1,3,4], average constrained clustering accuracy
was equal to or greater than average unconstrained accuracy. The exception is
MKM and MPKM’s performance on the Wine data set, for which the constraints
resulted in a reduction in average accuracy.

A careful examination of individual trials reveals that several constraint sets
adversely affect clustering performance. Table 2 shows the fraction of these 1000
trials that suffered a drop in clustering accuracy when using constraints, com-
pared to not using constraints. Note that each trial involved the same initial-
ization of the centroids for both the unconstrained and constraint experiments
so any change in performance is due to the constraints. We see that, for CKM
on all data sets, at least 25% of the constraint sets resulted in a decrease in
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Table 2. Fraction of 1000 randomly selected 25-constraint sets that caused a drop in
accuracy, compared to an unconstrained run with the same centroid intialization

Algorithm
Data Set CKM PKM MKM MPKM

Glass 28% 1% 11% 0%
Ionosphere 26% 77% 0% 77%

Iris 29% 19% 36% 36%
Wine 38% 34% 87% 74%

performance. For the other algorithms, the fraction of negative results ranges
up to 77% (for PKM and MPKM) and 87% (for MKM). The high proportion of
negative results for MKM and MPKM on the Wine data set help explain why
the average results show a decrease in performance (Table 1). These negative
results occur frequently for all data sets and algorithms. In fact, only two of the
16 cases presented in Table 2 are completely free of the negative effect (MKM
and MPKM with the Ionosphere and Glass data sets respectively). The average
performance results tend to mask this effect, since positive gains are often of
more magnitude than negative losses. However, for most real applications, we
are more interested in performance for the (single) set of available constraints
than “average” performance over many sets of constraints.

The possibility of a negative impact from constraints has significant impli-
cations for the practice of constrained clustering. First, the assumption that
constraints are always helpful (or at least, do no harm) for clustering has been
disproven by this empirical evidence. The adverse effects we observe are not re-
stricted to a single data set or constrained clustering algorithm. This underscores
the need for a means of characterizing relevant properties of a given constraint
set, so that we can understand why it has a positive or negative effect on clus-
tering. Such a characterization can also aid in future studies, so that useful
constraints can be selected preferentially and constraints with adverse effects
can be avoided. In the next section, we offer two constraint set measures that
provide the first steps toward this goal.

3 Characterizing the Utility of Constraint Sets

A major contribution of this work is the introduction of two measures, informa-
tiveness and coherence, that quantify important constraint set properties.

– Informativeness refers to the amount of information in the constraint set
that the algorithm cannot determine on its own. It is determined by the
clustering algorithm’s objective function (bias) and search preference. For
example, in Figure 1(a), an algorithm such as CKM would be biased to-
wards grouping nearby points together and separating distant points, but
the specified constraints contradict this bias.

– Coherence measures the amount of agreement within the constraints them-
selves, with respect to a given distance metric. Figure 1(b) shows two
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Fig. 1. Simple illustrative examples of (a) constraints with high informativeness for
CKM and (b) highly incoherent constraints, given a Euclidean distance metric. Must-
link constraints are depicted as solid line segments; cannot-link constraints have an ‘X’
through them.

constraints (ML and CL) that are very close and parallel. The ML con-
straint indicates that the distance between the points (and surrounding
points) should be small, while the CL constraint implies the opposite. With
respect to a Euclidean distance metric, these two constraints are incoherent.

The hypothesis that we investigate in this paper is that constraint sets with
high informativeness and coherence are most likely to provide performance gains.
We also expect that the negative performance effects are caused by highly in-
coherent constraint sets. First, incoherent constraints (as in Figure 1(b)) can
cause metric learning methods (MKM, MPKM) to learn suboptimal global met-
rics. Also, since these algorithms use the constraints to initialize the cluster
centroids, incoherent constraint sets are more likely to lead to a bad cluster ini-
tialization, increasing the chance of the clustering algorithm getting stuck in a
poor local minimum.

3.1 Quantifying Informativeness

We begin this section with some straightforward but necessary definitions.

Definition 1. Partition Specification. For any partition P of a data set D
containing n items, a set of constraints C completely specifies P if it is a set
of at most

(
n
2

)
must-link and cannot-link constraints that uniquely defines P.

Definition 2. Incomplete Constraint Set. A set of constraints Ĉ is incom-
plete with respect to a data set D if it does not specify a unique partition P of D.

In practice, most interesting problems will have an incomplete set of constraints,
so that there exist multiple partitions that satisfy all constraints. We first in-
troduce an idealized definition of constraint set informativeness.

Definition 3. Idealized Informativeness. Let P ∗ be the partition that glob-
ally minimizes the objective function of some algorithm A, in the absence of any
constraints. Let C∗ specify P ∗ in the sense given in Definition 1. The informa-
tiveness in a given constraint set C is the fraction of constraints in C that are
violated by C∗.
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That is, {C∗ − C} is the set of constraint relationships that A is unable to cor-
rectly determine using its default bias. These constraints are therefore informa-
tive with respect to maximizing clustering accuracy. For illustration, consider a
data set {a, b, c, d, e} with P ∗ = {[a, b], [c, d, e]}. Using definition 1, we obtain C∗,
which can be compactly represented as {ML(a, b), ML(c, d), ML(d, e), CL(a, c)}
due to the transitive and entailment properties of ML and CL constraints re-
spectively [1]. If we are given a set of constraints C1 = {ML(a, b), ML(c, d)},
then C1 has an informativeness of 0; each of the constraints was already satisfied
by the algorithm’s default output P ∗. In contrast, C2 = {ML(a, b), ML(b, c)}
has an informativeness of 0.5 because ML(b, c) is not in C∗ and is therefore new
information.

This definition of informativeness cannot be realized in practice, since we
do not know P ∗ prior to clustering. We next present an efficiently computable
approximation.

Approximate Measure of Informativeness. Our approximation is based
on measuring the number of constraints that the clustering algorithm cannot
predict using its default bias. Given a possibly incomplete set of constraints C
and an algorithm A, we generate the partition PA by running A on the data set
without any constraints. We then calculate the fraction of constraints in C that
are unsatisfied by PA:

IA(C) =
1
|C|

[∑

c∈C

unsat(c, PA)
]

(1)

where unsat(c, PA) is 1 if P does not satisfy c and 0 otherwise. This approach
effectively uses the constraints as a hold-out set to test how accurately the algo-
rithm predicts them. Given this equation, we can quantify the informativeness
of the constraint sets in Figure 1 for the CKM algorithm as ICKM (Ca) = 1.0
and ICKM (Cb) = 0.5.

3.2 Quantifying Coherence

Coherence is the amount of agreement between the constraints themselves, given
a metric D that specifies the distance between points. It does not require knowl-
edge of the optimal partition P ∗ and can be computed directly. The coherence
of a constraint set is independent of the algorithm used to perform constrained
clustering.

One view of an ML(x, y) (or CL(x, y)) constraint is that it imposes an at-
tractive (or repulsive) force within the feature space along the direction of a
line formed by (x, y), within the vicinity of x and y. Two constraints are inco-
herent if they exert contradictory forces in the same vicinity. We consider all
constraint pairs composed of an ML and a CL constraint (pairs composed of the
same constraint type cannot be contradictory). To determine the coherence of
two constraints, a and b, we compute the projected overlap of each constraint on
the other as follows (see Figure 2 for examples).
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(over  a  = 0)b
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b
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Fig. 2. Three cases of computing the projected overlap between constraints a and b

Let −→a and
−→
b be vectors connecting the points constrained by a and b respec-

tively. Without loss of generality, we use the convention (x1, x2) to refer to the
points connected by a vector −→x . In the context of Figure 2, x1 appears to the
left of x2 for all vectors shown. We first project −→a onto

−→
b :

−→p = proj−→
b
−→a =

(|−→a | cos θ
) −→

b

|−→b | ,

where θ is the angle between the two vectors. Next, we calculate how much of
this projection overlaps with

−→
b . Since −→p and

−→
b are colinear (θ = 0), we simply

compute the distance from b2 to each of b1, p1, and p2. There are three cases,
corresponding to the three examples in Figure 2:

overba =

⎧
⎪⎨

⎪⎩

0 if db2,b1 ≤ db2,p2 , db2,b1 ≤ db2,p1

db1,p2 if db2,p2 < db2,b1 , db2,p1 ≥ db2,b1

dp1,p2 if db2,p2 < db2,b1 , db2,p1 < db2,b1

(2)

Given this background, we now define coherence, COH, as the fraction of
constraint pairs that have zero projected overlap:

COHD(C) =

∑
m∈CML,c∈CCL

δ(overcm = 0 and overmc = 0)
|CML||CCL| (3)

We quantify the coherence of the constraint sets in Figure 1 as COH(Ca) = 0.0
(all ML/CL pairs have some overlap) and COH(Cb) = 0.0 (the single constraint
pair completely overlaps).

Our measure of coherence is applicable to any space where vector projec-
tion is defined. The preceding examples and the experimental results presented
later all make use of a Euclidean distance metric, since the four algorithms we
evaluate use either Euclidean distance or a close variant, such as a generalized
Mahalanobis (weighted Euclidean) distance metric.

4 Experimental Results

In this section, we present three important results. First, we analyze the rela-
tionship between the proposed measures (informativeness and coherence) and
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Table 3. Average measures of informativeness (I) and coherence (COH) of 5000 ran-
domly generated 3-constraint sets. Compare with Table 1.

Algorithm
Data Set ICKM IPKM IMKM IMPKM COH

Glass 0.34 0.43 0.50 0.50 0.45
Ionosphere 0.41 0.41 0.42 0.42 0.27

Iris 0.12 0.12 0.11 0.11 0.51
Wine 0.28 0.28 0.06 0.06 0.60

constrained clustering performance. Next, we show the benefits that can be ob-
tained when using these measures to filter constraint sets. Finally, we analyze
constraint sets from an image data set and show how informativeness and coher-
ence can provide insights into why clustering performance increases or decreases.

4.1 Impact of Informativeness and Coherence on Clustering
Performance

To understand how these constraint set properties affect various algorithms, we
performed the following experiment. We randomly generated constraint sets of
just three constraints 5000 times. With such a small number of constraints,
the possible combinations of informativeness and coherence values is limited,
permitting a detailed study. For each data set, we can compare the performance
of each algorithm for each possible informativeness/coherence situation.

First, we report the average informativeness and coherence we observed for
each algorithm and data set (Table 3). Although Tables 1 and 3 are not directly
comparable due to the difference in constraint set sizes, we see an interesting
trend. In Table 1, the Glass data set exhibited the largest increases in accuracy
when using constraints; we find in Table 3 that the average informativeness for
these constraints is also high. However, high informativeness is not sufficient
for predicting accuracy improvement: the Ionosphere constraints, although in-
formative, also tend to have very low coherence. Incoherent sets are difficult to
completely satisfy, and we see this reflected in the lack of significant improve-
ment when using constraints with this data set. Conversely, the Iris constraints
have relatively high coherence but low informativeness, leading to the modest
(but positive) average effect on performance for all algorithms. The Wine con-
straints have a remarkable lack of informativeness for MKM and MPKM, so
the incoherence of the data set dominates performance and explains the small
decrease in average accuracy.

We have shown that average results can obscure individual behavior. There-
fore, we conducted a detailed analysis to better understand the relationships
between each measure and performance. Table 4 focuses on constraint sets that
are fully coherent, comparing performance between sets with high vs. low infor-
mativeness. We find that high informativeness almost always leads to an increase
in performance, for all algorithms. The exception is MKM and MPKM on the
Wine data set. Table 5 explores the opposite situation, focusing on constraint
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Table 4. Average accuracy for fully coherent constraint sets, comparing performance
of sets with high (“Inform.”) and low (“Uninf.”) informativeness

Algorithm
CKM PKM MKM MPKM

Data Set Inform. Uninf. Inform. Uninf. Inform. Uninf. Inform. Uninf.

Glass 68.9 67.8 57.8 57.1 58.1 49.6 54.9 54.3
Ionosphere 58.9 58.9 58.8 58.7 58.9 58.9 93.9 93.5

Iris 89.2 88.1 88.1 86.7 92.9 89.2 93.9 93.5
Wine 71.8 71.8 72.1 71.8 92.2 93.9 93.5 93.9

Table 5. Average accuracy for non-informative constraint sets, comparing performance
of coherent (“Coh.”) and incoherent (“Incoh.”) sets

Algorithm
CKM PKM MKM MPKM

Data Set Coh. Incoh. Coh. Incoh. Coh. Incoh. Coh. Incoh.

Glass 67.9 67.4 57.1 54.3 49.6 49.4 54.8 50.2
Ionosphere 58.9 58.9 58.7 58.7 58.9 58.9 58.8 58.8

Iris 86.7 85.2 86.7 85.2 89.2 89.2 89.3 88.8
Wine 71.8 71.8 71.9 71.8 94.0 93.9 93.5 93.2

sets that have low informativeness but a variety of coherence values. Incoherence
tends to adversely affect performance, particularly for the Glass and Iris data
sets. It has less impact on the Ionosphere and Wine data sets.

4.2 Constraint Selection Based on Coherence

We posit that informativeness and coherence can provide guidance in select-
ing the most useful constraint sets. Returning to the 25-constraint experiments
from Section 2, we applied a coarse constraint set selection strategy by removing
the 500 least coherent constraint sets and calculating average performance on
the remaining 500 sets (Table 6). We find a small but consistent increase in the
average accuracy with those sets removed, suggesting that generating or select-
ing constraint sets with high coherence can provide gains in future constrained
clustering experiments. The Iris data set, when analyzed by MPKM, is an excep-
tion to this rule. The MPKM results suggest that there are some less-coherent
constraint sets that yield very good performance, when both metric learning
and constraint satisfaction are used. We plan to investigate this exception more
thoroughly in future work.

4.3 Visualizing Informative and Coherent Constraint Sets

We have demonstrated empirically that highly informative and coherent con-
straint sets lead to improved clustering performance, while incoherent sets can
have an adverse effect. In this section, we show examples of constraint sets from
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an image data set that permit us to visualize informative and coherent constraint
sets.

For these experiments, we used the CMU Face Images data set [9]. We used a
subset containing 271 images of human faces with a variety of orientations and
expressions. Each image is labeled as Male or Female, and the goal is to identify
clusters that correspond with these categories (215 Male and 56 Female images).
Each image is approximately 120×120 pixels, yielding a total of 14402 features.
We conducted 100 trials, each time generating two randomly selected constraints.
Without constraints, the algorithms achieved Rand Indices of: CKM (53.2%),
PKM (53.9%), MKM (51.9%) and MPKM (51.9%). When using two randomly
selected constraints, the performance ranges were: CKM [53.6%,54.5%], PKM
[53.6%, 55.3%], MKM [49.8%,53.7%], MPKM [49.9%, 66.3%]. For this problem,
just two constraints can significantly improve the performance of the MKM and
MPKM algorithms, suggesting that the constraints are very useful for metric
learning.

Since the items in this data set are images, we can directly visualize the con-
straint sets. Figure 3 shows two constraint sets (one per line) that improved the
performance of MPKM from 51.9% to over 65%; both sets have an informa-
tiveness and coherence of 1.0. Figure 4 shows two constraint sets (one per line)
that either provided no improvement (CKM) or adversely affected performance
(PKM, MKM, and MPKM) with respect to the unconstrained performance; both
sets have an informativeness and coherence of 0.0.

We see that the beneficial constraint sets have an intuitive interpretation: the
must-linked images connect examples with different facial orientations, while the
cannot-link constraints are between images with very similar orientations. Be-
cause “orientation” is not a feature provided to the algorithm, these constraints
are very informative. They encourage the algorithm to create clusters that avoid
grouping images simply based on where the bright “face” pixels are located.
In contrast, in the constraint sets that have negative effects, the must-linked
instances are of different faces in the similar orientation, and the cannot-link
constrained instances have different orientation. This biases the constrained clus-
tering algorithms towards clustering faces with the same orientation, which is

Table 6. Clustering performance (Rand Index) when using constraint sets selectively.
We report average accuracy over all 1000 25-constraint sets (results copied from Ta-
ble 1) compared to average accuracy over the 500 most coherent sets. Statistically
significant increases at the 95% confidence interval are shown in bold.

Algorithm
CKM PKM MKM MPKM

Data Set All Top 500 All Top 500 All Top 500 All Top 500

Glass 69.4 70.4 68.8 70.6 56.6 56.6 67.8 68.4
Ionosphere 58.6 59.3 58.9 58.9 58.8 59.3 58.9 58.9

Iris 87.8 88.3 88.3 88.3 93.6 94.5 91.8 91.4
Wine 70.9 71.5 72.0 72.5 91.3 93.3 90.6 91.1
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           Must-link                   Cannot-link

      

Informativeness: 1, Coherence: 1 

             Must-link                Cannot-link 

      
  

Informativeness: 1, Coherence: 1 

Fig. 3. Examples of beneficial constraint sets (one per line) that significantly improved
the performance of MPKM

Must-link                Cannot-link 

      

Informativeness: 0, Coherence: 0  

              Must-link                  Cannot-link          

      

Informativeness: 0, Coherence: 0 

Fig. 4. Examples of constraint sets (one per line) that had no effect or an adverse effect
on algorithm performance

not a useful strategy when trying to separate images by gender. Our measures of
informativeness and coherence correctly capture this concept by characterizing
the likely utility of each set.

5 Conclusions and Future Work

The contributions of this paper are two-fold. First, we have shown the first
evidence that constraints can result in a decrease in clustering accuracy. This
occurs even with constraints that are completely accurate and noise-free. In
experiments with four UCI data sets and four constrained clustering algorithms,
we found that the fraction of randomly generated constraint sets that result in a
performance drop can range well above 50%. Second, we proposed two constraint
set properties, informativeness and coherence, that provide a quantitative basis
for explaining why a given constraint set increases or decreases performance.
We demonstrated that performance gains are largely attributable to constraint
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sets with high informativeness and coherence, while drops in performance are
associated with incoherent data sets.

Our experiments with selectively filtering randomly generated constraints to
remove sets with low coherence suggest a promising avenue for future work
with constrained clustering algorithms. We plan to more fully explore the use of
informativeness and coherence to select the most useful constraints for clustering.
Ultimately, this research direction could lead to reduced computational effort
(since fewer constraint sets are needed to assess performance) and higher average
performance on a variety of data sets.
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