
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 10, NO. 5, SEPTEMBER 2013 1021

A Case Study of Spectral Signature Detection in
Multimodal and Outlier-Contaminated Scenes

David R. Thompson, Lukas Mandrake, Robert O. Green, and Steve A. Chien

Abstract—Mapping localized spectral features in complex
scenes demands sensitive and robust detection algorithms. This let-
ter investigates two aspects of large images that can harm matched
filter (MF) detection performance. First, multimodal backgrounds
may violate normality assumptions. Second, outlier features can
trigger false detections due to large projections onto the target
vector. We review two state-of-the-art methods designed to resolve
these issues. The background clustering of Funk et al. models
multimodal backgrounds, and the mixture-tuned (MT) MF of
Boardman and Kruse addresses outliers. We demonstrate that
combining the two methods has additional performance benefits.
An MT cluster MF shows effective performance on simulated and
airborne data sets. We demonstrate target detection scenarios that
evidence multimodality, outliers, and their combination. These
experiments explore the performance of the component algo-
rithms and the practical circumstances that can favor a combined
approach.

Index Terms—Clustering methods, filters, geoscience and re-
mote sensing, hyperspectral imaging, hyperspectral sensors,
matched filters, pattern clustering, pattern recognition, remote
sensing, signal processing.

I. INTRODUCTION

IMAGING spectrometers can play an important role in both
Earth Science [1] and planetary geology [2]. The spatial res-

olution, spectral resolution, and sensitivity of these instruments
continue to improve, enabling ever-subtler discrimination of
minerals [3], species [4], [5], and synthetics [6]. The ability
to combine morphological cues with compositional detail gives
them an important role in solar system exploration [2]. Detec-
tion of subtle spatially localized signals is a common challenge
across all of these domains. Such signals commonly appear
as subpixel fractions against a background substrate and are
difficult to reliably identify. Subpixel detection is related to the
challenges of spectrometer mapping [7], classification [8], and
abundance estimation [9]. Here, we consider the challenge of
detecting a specific anticipated target at subpixel abundances.
We will assume that its spectral properties are known from prior
in situ or laboratory measurement.

The MF is the classical strategy for weak signal detection
in such cases [10]. It models a d-dimensional spectral signal
x as a linear combination of a background distribution with
target t. The filter is a d-vector f , whose inner product fT x
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best discriminates the subpixel signal from the background.
Assuming a target mixing fraction φ, a background having
mean µ∗ and covariance matrix Σ∗, and ignoring independent
additive measurement noise, the measured spectrum can be
written as a perturbed multivariate normal distribution, i.e.,

x = (1 − φ)N(µ∗,Σ∗) + φt. (1)

MF implementations often estimate background means and
covariances from the data [10], [11]. For collected data X =
{xi}n

i=1, the sample estimates µ and Σ are

µ =
1

n

∑

xi∈X

xi Σ =
1

n

∑

xi∈X

(xi − µ)(xi − µ)T . (2)

The optimal MF is the best linear projection to separate the
distributions, in which the target is present and absent. These
differ only by a constant factor having equivalent covariance
statistics. The MF is defined as

αi = fT xi for f =
Σ−1t

tTΣ−1t
. (3)

The expected MF score α is the mixing ratio φ, which ranges
from zero to one.

MF detection is a broad and active area of remote sensing
research, and there are many other formulations. Variants such
as adaptive subspace detectors [12] can improve performance
by exploiting information about the target distribution. The
finite-target MF [13] further estimates the mixing fraction with
maximum likelihood and uses the optimal likelihood ratio test
for detection. We also note recent nonlinear MFs based on ker-
nel techniques [14]. We refer the interested reader to extensive
taxonomies by Kraut et al., Dimitris et al., and Manolakis and
Shaw [12], [15], [16].

This letter investigates the general problem of robust MF
detection for challenging background distributions. Several
assumptions of the traditional MF are difficult to satisfy for
large complex scenes [17], [18]. First, we consider the problem
of multimodal backgrounds. Realistic backgrounds are seldom
normally distributed. Neglecting intimate mixing, measured
reflectances are convex combinations of component materials
mixed in proportion to geographic area [9]. Scenes may also
contain discrete terrain regions and geographic trends, resulting
in data that are distributed along low-dimensional manifolds or
split into clusters [19].

Outliers are another challenge. These small regions are
caused by anomalous objects, glint, or instrument artifacts.
It is difficult to characterize their statistical properties; they
are numerically distinctive and may not significantly affect
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the sample covariance. However, their projection onto the MF
vector may still have high magnitude [20]. Outliers therefore
have high propensity to cause false alarms and are generally
not feasible convex combinations of the background and target.

Here, we review two illustrative techniques that address each
of these scenarios and show that their combination has signif-
icant additional performance benefits. We use the background
clustering of Funk et al. [19] to model multimodal backgrounds
and apply the mixture-tuned MF (MT-MF) of Boardman et al.
to mitigate outliers [20]. The combined MT cluster MF (MT-
CMF) shows promising performance on simulated and air-
borne data sets. Tests demonstrate practical target detection
and mapping scenarios that evidence multimodality, outliers,
and both effects in combination. These experiments show the
success and failure modes for each component algorithm and
the circumstances that would favor a combined approach.

II. APPROACH

A. Preconditioning

We will assume the spectral data have been atmospheri-
cally corrected and transformed to reflectance. A preprocessing
step known as the minimum noise fraction (MNF) transform
whitens the data to have zero mean and uncorrelated unit noise
[20]. Methods for estimating noise properties include calibrat-
ing with dark images or empirical estimation from the scene
[21], [22]. We use the empirical method of [20]. This assumes
the background is locally homogeneous, so that differences
between neighboring pixels are due to measurement noise.
It estimates the covariance of this noise using the difference
between each image pixel xi and the set of two neighbors
to the east and south, which is denoted by Qxi . We average
these contributions, dividing by 1.5 to account for both terms
as in [20]. The noise covariance then decomposes via singular
value decomposition into orthogonal matrices UN and VN ,
and diagonal eigenvalue matrix DN , i.e.,

UNDNVT
N =

1

1.5(n − 1)

∑

xi∈X

∑

xj∈Qxi

(xi − xj)(xi − xj)
T .

(4)

We calculate each zero-mean noise-whitened data point x′
i by

projection onto the principal components, with a magnitude that
makes the noise distribution unit-variance isotropic, i.e.,

x′
i = D−1/2

N UN (xi − µ̂). (5)

The MNF transform then performs a second singular value
decomposition and rotation onto the principal components. The
result is 6that data points have a convenient zero-mean repre-
sentation, with orthogonal channels ordered by eigenvalue, i.e.,

UDVT =
1

n

∑

xi∈X

xix
T
i (6)

x′′ =Ux′. (7)

This preprocessing is implicit in all the analyses that follow;
thus, we will drop primes from our notation. We also apply the
same transformation to all target spectra before detection.

B. Background Clustering

MF target detection assumes that the background is
Gaussian. Most implementations compute background covari-
ance using a local fixed-size window [10], [18]. This rectangu-
lar region is arbitrary, and its data may not actually be Gaussian
distributed. In contrast, the background clustering method of
Funk et al. [19] seeks backgrounds that are compact and
Gaussian but not necessarily contiguous. A k-means clustering
algorithm partitions the data into k disjoint background sets
{Mj}k

j=1, each with a sample mean µj and covariance matrix
Σj . The resulting backgrounds are more compact and easier to
separate from the target signal. We will refer to this technique
as the CMF.

The k-means clustering algorithm seeks cluster memberships
that minimize intercluster variance [23]. Cluster centroids begin
initialized to random data points. An assignment step assigns
each data point to the closest centroid. Then, an update sets each
centroid to be the mean of its member data points. This contin-
ues until convergence, which rarely requires more than a few
iterations. High-dimensional data require special care; spectral
channels in the original representation are highly correlated,
and Euclidean distance may not be physically meaningful.
Funk et al. favor a distance metric that reflects the covariance
of the spectral bands. Our MNF rotation provides this already
due to its principal component representation. We perform
clustering using the three most significant MNF channels.
Performance is generally insensitive to the number of channels
retained.

To analyze a candidate spectrum, the CMF identifies the
nearest cluster centroid j = arg minj ‖µj − xi‖2. It uses the
corresponding MF fj given by

αi = fT
j (xi − µj) =

[
Σ−1

j t

tTΣ−1
j t

]T

(xi − µj). (8)

If backgrounds are multimodal or distributed along manifolds,
the local covariance provides a more accurate probability den-
sity and improves target/background separation.

C. MT Matched Filtering

The MT-MF of Boardman et al. is a partial unmixing ap-
proach combining MF detection with outlier rejection [20]. It
augments the MF score with a second value βi representing
mixing feasibility; the probability of the observation assuming
it is a convex combination of the background and the target.
This penalizes points with a large magnitude perpendicular
to the MF, discriminating feasible mixtures from statistical
anomalies that are improbable under (1). The MT-MF typifies
other methods that use a decision boundary in a 2-D space, such
as the false alarm mitigation of DiPietro et al. [24].

The MT-MF estimates the mixing fraction with αi = fT xi

and background contribution xi − αit. It estimates the like-
lihood of this signal with respect to the known background
distribution, which is an operation simplified by the MNF
transform due to isotropy and unit noise. It is sufficient to use
the L2 norm of the result, adjusting channels by the square root
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of the MNF eigenvalues and unit noise. This yields the mixture
tuning vector qi. For each channel l, we have

qi(l) =
xi(l) − αit(l)

D(l)1/2(1 − αi) − 1
. (9)

The mixing feasibility is βi = ‖qi‖2. Together, the mixing
feasibility βi and MF response αi tell whether the point is
anomalous and a good match to the target, respectively. Here,
we use the quantity αi/βi as a detection score, which offers
consistent performance across all data sets. This expression
resembles the adaptive coherence estimator [25]; although, in
principle, the MT-MF detection statistic can be any monotonic
function of α and β.

D. MT-CMF

Our proposed approach combines background clustering
with mixture feasibility. We apply the MNF transform followed
by the k-means clustering. We then estimate each cluster’s
mean, covariance, and the corresponding eigenvalues. This
yields a cluster-specific MF estimate αi but also a cluster-
specific feasibility score βi (Algorithm 1 here).

Algorithm 1 Mixture Tuned Cluster Matched Filter
Input: Image {xi}n

i=1, number clusters k, target t
Output: Matched filter indices {αi,βi}n

i=1

Compute data mean µ̂ = 1/n
∑

xi∈X(xi);
Apply MNF transform using Equation (7);
Find clusters {Mj}k

j=1 with k-means;
Compute cluster means {µj}k

j=1,
covariances {Σj}k

j=1 foreach
cluster Mj do

Singular Value Decomposition: Σj = UjDjVT
j

Compute Cluster Matched Filter fj = Σ̂−1
j t/(tT Σ̂−1

j t);
foreach xi ∈ Mj do

xi ← Uj(xi − µj);
αi = fT

j xi;
foreach l do

qi(l) = xi(l)−αit(l)
(Dj(l)1/2(1−αi)−1

;
end
βi = ‖q‖2;

end
end

A simple “Daisyworld” simulation [19] demonstrates its
performance. We generate a simple size 1000 data set drawn
from two Gaussian distributions having opposite correlation
coefficients. We simulate outliers by optionally drawing 33%
of the population from a much broader Gaussian distribution
(see Fig. 1). A series of tests evaluate MF, CMF, MT-MF, and
MT-CMF strategies by generating random target signatures uni-
formly distributed throughout the range of actual (nonoutlier)
background data. We inject this target at a 10% mixing fraction
into each background spectrum.

We perform 100 trials for each of three scenarios, namely,
a multimodal scenario with two Gaussians, a unimodal back-
ground with outliers, and a multimodal background with

Fig. 1. Daisyworld simulation, as in Funk et al. [1]. We generate data from
either one or two clusters, as well as a much broader “outlier” distribution.

Fig. 2. Fraction of actual targets detected at a 1% false alarm rate for the
Daisyworld simulation.

Fig. 3. MT-MF and MT-CMF scores for the Daisyworld simulation. We plot
points according to generating distribution (rather than the MT-CMF estimate
of cluster memberships). The black “x” indicates the location of the target, and
the black line shows an isocontour of constant α/β. The MT-CMF reduces
spurious false alarms with high incidental MF scores.

outliers. For each trial, we compute the fraction of true positives
achieved at a constant 1% false alarm rate. Fig. 2 shows the
resulting scores expressed as percentiles. The original MF never
outperforms any of the variants. The CMF performs well if its
assumptions are satisfied but is sensitive to outliers. Conversely,
the MT-MF method is robust in the presence of outliers, but its
performance is reduced for the multimodal background. The
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Fig. 4. Mountain pass, golf course, and casino AVIRIS scenes used in simulations (R:579 nm; G:531 nm; B:482 nm).

MT-CMF outperforms the other methods with an increasing
margin as task difficulty increases.

Fig. 3 illustrates this phenomenon visually. It shows MF
scores α and mixing feasibility β using MT-MF and MT-CMF
methods with points labeled according to generating distribu-
tion. The MT-CMF estimates α and β independently for each
background cluster, which results in more compact distribu-
tions. The target lies on the border between these two clusters,
and an accruate multimodal background is necessary to detect
it reliably.

III. EVALUATION

We evaluate the algorithms for a physical remote sens-
ing scenario by introducing simulated targets into reflectance
data from an airborne instrument. Airborne Visible\Infrared
Imaging Spectrometer (AVIRIS) [1], [26] is an imager carried
onboard ER-2 and Twin Otter turboprop platforms. It acquires
spectra in the 400- to 2500-nm range with 10-nm spectral
resolution. We use a subset of data from a Twin Otter flightline
over desert terrain, in which the images have a spatial resolution
of approximately 3 m. We select three 256 × 256 image tiles
representing diverse natural and artificial environments (see
Fig. 4). The mountain pass is comprised of open terrain with
several subtle terrain variations. A golf course scene introduces
localized outlier features. Finally, an urban casino scene is the
most complex, containing a wide range of artificial materials,
terrain, and large buildings. The AVIRIS radiance data were
atmospherically corrected and transformed to reflectance.

We acquired target spectra from physical samples represent-
ing a range of natural and synthetic materials. These include
blue and brown nylon tarps, synthetic brown and white card,
white paint, treated nylon fabric, and raw building materials
such as unstained wood, molded plastic, and roofing shingles.
We acquired these reflectance spectra manually under direct
sunlight using an Analytical Spectral Devices field spectrom-
eter having 10-nm spectral resolution throughout the 350- to
2400-nm range. Fig. 5 shows the resulting target spectra after
normalizing by the maximum value.

In order to meaningfully compare algorithms, we create a
challenging task by intentionally injecting target signals at a
fractional fill level near the detection limit. We introduce each
target at a 1% fractional fill, which is equivalent to a square

Fig. 5. Target signatures used in simulations.

30 cm wide. Our test data combine these targets into the
reflectance data with compensatory scaling to account for the
area “covered” by the virtual target.

IV. RESULTS AND DISCUSSION

Our performance evaluation compares the resulting detection
statistics against the background pixels. We found that the
performance of the cluster-based algorithms is insensitive to the
number of clusters used; here, we set k = 10 for all images and
clustering methods. Table I reports the true positive fraction at
a constant false alarm rate of 0.1%. The top-scoring method for
each scenario appears in bold.

The results largely corroborate the simplified Daisyworld
simulation. The classical MF performs worst. Both MT and
CMFs outperform each other for different background/target
combinations. The CMF excels for the mountain pass scene
with few outliers but subtle surface variations. In contrast, the
MT-MF offers superior outlier rejection for the homogeneous
background of the golf course. Overall, the combined algorithm
performs best in each scenario. Often, it is able to significantly
achieve better detection rates than either component technique
independently. This is particularly true for the most challenging
scene, which combines scattered outliers with multimodality.

These results suggest that clustering might improve other MF
variants. Candidates include the finite-target MF that estimates
the maximum likelihood mixing fraction [13] and adaptive
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TABLE I
TRUE POSITIVE FRACTION DETECTED AT A 0.1% FALSE ALARM RATE

subspace detectors that measure signal energy in the subspace
of the target [12]. These typically rely on unimodal background
assumptions and might glean similar benefits from background
clustering. Another promising avenue for further investigation
would be to improve the background clustering technique.
Robust estimation strategies might improve reliability for fit-
ting multimodal background distributions to very noisy data.
Regardless, the MT-CMF approach presented here is a good
compromise. Simple implementation and robust performance
make it a compelling option for MF detection in complex
scenes.
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