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[1] We present a semiautomated method to extract spectral end‐members from
hyperspectral images. This method employs superpixels, which are spectrally homogeneous
regions of spatially contiguous pixels. The superpixel segmentation is combined with an
unsupervised end‐member extraction algorithm. Superpixel segmentation can complement
per pixel classification techniques by reducing both scene‐specific noise and computational
complexity. The end‐member extraction step explores the entire spectrum, recognizes
target mineralogies within spectral mixtures, and enhances the discovery of unanticipated
spectral classes. The method is applied to Compact Reconnaissance Imaging Spectrometer
for Mars (CRISM) images and compared to a manual expert classification and to state‐of
the‐art image analysis techniques. The technique successfully recognizes all classes
identified by the expert, producing spectral end‐members that match well to target classes.
Application of the technique to CRISM multispectral data and Moon Mineralogy Mapper
(M3) hyperspectral data demonstrates the flexibility of the method in the analysis of a range
of data sets. The technique is then used to analyze CRISM data in Ariadnes Chaos,Mars, and
recognizes both phyllosilicates and sulfates in the chaos mounds. These aqueous deposits
likely reflect changing environmental conditions during the Late Noachian/Early Hesperian.
This semiautomated focus‐of‐attention tool will facilitate the identification of materials
of interest on planetary surfaces whose constituents are unknown.
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1. Introduction

[2] Hyperspectral (hundreds of spectral bands) imaging
spectrometers have now orbited 4 planets and our Moon.
These instruments yield unprecedented information about
atmospheric and ocean properties, surface mineralogy, and
land cover characteristics of the Earth and planets. These
rich data sets have spurred the development of a number of
techniques for spectral classification. The goal of these
techniques is to recover and recognize target materials from
within spectra, but a number of issues make this task chal-
lenging. Hyperspectral data are affected by scene‐specific
noise both from the sensor itself and from transient atmo-
spheric phenomena. The magnitude and nature of this noise is
very difficult to anticipate, define, and therefore mitigate.

Furthermore, planetary surfaces are often mixtures of mate-
rials resulting in spectra of mixed surface materials. For
simplicity this mixing is often (reasonably) modeled as linear,
but there are numerous cases where this assumption fails
(e.g., the effect of dark materials in a mixed spectrum) [Clark,
1999]. Planetary regoliths, in particular, often include a per-
vasive component (e.g., Martian dust or dark asteroid sur-
faces created by space weathering) that contributes strongly
to resulting spectra, masking target materials.
[3] Extraterrestrial planets present other unique challenges.

Without the benefit of field verification, planetary surface
compositions are potentially unconstrained. Planets may also
contain materials that are not represented in spectral libraries,
including minerals that are rare or metastable on Earth (e.g.,
reduced lunar minerals, dry Mars minerals, impact glasses).
This leaves potential targets or anomalies undiscovered
because they or their signatures were not expected. Tech-
niques that are able to explore and characterize an entire
spectral data set in an unbiased manner are desirable to search
for novel mineralogy.
[4] Data analysis techniques also benefit mission opera-

tions. For example, due to data downlink restrictions, the
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Compact Reconnaissance Imaging Spectrometer for Mars
(CRISM) instrument aboard the Mars Reconnaissance
Orbiter (MRO) operates in two modes: (1) a global survey
mode at reduced spatial and spectral resolution and (2) a high‐
resolution mode estimated to cover just ∼5% of the planet at
full spatial and spectral resolution. As many high‐priority
targets are selected opportunistically in response to analyzed
survey images, complete and fast interpretation is vital for
effective mission planning. However, manually hunting for
particular mineralogical signatures is laborious and the vol-
ume of downlinked data may outpace the capacity for timely
analysis. It is imperative that all survey data be analyzed
robustly and rapidly to assist in tactical mission planning
and identifying future targets during the finite lifetime of a
planetary mission.
[5] We address the task of hyperspectral search and survey

in planetary data sets where scene constituents are unknown.
Specifically, we seek to design a semiautomated “focus of
attention” tool to triage the data, assisting analysts by local-
izing salient materials and calling out distinctive regions for
manual study. Our method uses a superpixel segmentation to
reduce noise inherent in planetary data sets. Geometric
analyses of the superpixel spectra are then used to identify
end‐member materials across a scene. We evaluate the per-
formance of this process to identify relevant geologic mate-
rials in CRISM and MoonMineralogy Mapper (M3) data and
apply it to the study of Ariadnes Chaos, Mars.

1.1. Current Practice for Mineralogical Search

[6] Two common data exploration strategies include clas-
sification with training examples and end‐member detection
algorithms.
1.1.1. Supervised Classification
[7] In order to find specific anticipated materials, analysts

can classify new image pixels based on library spectra or
training examples from similar data. Common classification
approaches involve spectral angle projections onto known
library samples or statistical classification based on methods
using statistical and machine learning approaches [Tso and
Mather, 2009]. This latter group includes decision trees
[Friedl and Brodley, 1997] and kernel methods such as
support vector machines [Melgani and Bruzzone, 2004].
Achieving good generalization performance on a new scene
is difficult because imaging conditions and substrate may
differ from the training examples. Such changes can easily
overwhelm a subtle absorption band.
[8] Analysts seeking specific mineralogy often create color

maps from chosen bands or band ratios in order to emphasize
the key spectral features. This approach is ubiquitous in
planetary science investigations and is typified by the CRISM
summary products [Pelkey et al., 2007; Ehlmann et al., 2009;
Roach et al., 2009; Salvatore et al., 2009]. Here, specific
absorption bands associated with materials of interest are
identified and used to compute summary values such as
continuum‐ratioed band depths or spectral slopes. These
summary products are valuable guides for mineralogical
search because they are immediately interpretable andmay be
minimally influenced by certain noise artifacts or image
variability. For Earth and planetary data sets, the expert
system Tetracorder [Clark et al., 2003] uses expert‐defined
rules to integrate library spectrum fits and absorption features
for automated mapping and classification.

[9] These techniques are effective for mapping scenes with
known mineralogy. However, unconstrained mineralogical
searches in new images are difficult and require considerable
user expertise. All supervised techniques are hindered by
their inability to find materials that are not anticipated.
Moreover, confirmation of mineralogical species remains
labor intensive. A common approach is to manually identify
pixels with the highest index values and average them to
reduce both instrument and atmospheric noise and produce a
spectrum that is more readily interpretable by comparison to
spectral libraries. Here we provide a technique that combines
and unsupervised classification with noise reduction using
superpixels to efficiently assess and display the spectral
variability of an image cube.
1.1.2. Hyperspectral Search With End‐Member
Detection
[10] Observed reflectance at visible/near infrared wave-

lengths is generally understood to be the combination, pos-
sibly linear, of a smaller set of “end‐member” spectra. These
individual constituents need not be present as pure spectra in
the scene. While identifying the spectral end‐members is
essential for hyperspectral unmixing and abundance estima-
tion, it can also be informative for hyperspectral search as
the end‐member spectra presumably represent the purest
examples of all the distinctive materials that are present.
Confounding factors include instrument noise, atmospheric
effects, and substrate variability, each of whichmay introduce
additional spectral variants of otherwise identical minerals.
Mature end‐member detection algorithms aim to locate dis-
tinctive materials despite these confounding factors.
[11] A wide range of end‐member detection algorithms

exists for both linear and nonlinear mixing models [e.g.,
Parente and Bishop, 2010]. Typical geometric end‐member
detection approaches leverage the geometric properties of
the linear mixing model, in which end‐member spectra
are vertices of a high‐dimensional (determined by the spec-
tral resolution) simplex enclosing the data. Typical exam-
ples include N‐FINDR [Winter, 2004], Vertex Component
Analysis [Nascimento and Bioucas‐Dias, 2005], or the
Sequential Maximum Angle Convex Cone (SMACC)
method used in this work [Gruninger et al., 2004]. The Pixel
Purity Index [Boardman et al., 1995] is a measure of a pixel’s
“extremity”with respect to the other data points in the image,
and can be used for end‐member detection through an
iterative, manually guided process. Alternatively, statistical
end‐member detection methods analyze the distribution for
the data with end‐member spectra as unknown parameters,
and estimate these using statistical techniques [Dobigeon
et al., 2009]. Other previous approaches for unsupervised
spectral analysis use statistical properties of the data. Marzo
et al. [2006] apply a general k‐means clustering strategy to
Thermal Emission Spectrometer data and recover geologi-
cally meaningful categories. Later work uses clustering for
intelligent compression of high‐volume images [Marzo et al.,
2008]. Roush and Hogan [2007] and Hogan and Roush
[2009] analyze catalogs of infrared spectra collected in the
laboratory; they propose a self‐organizing map (SOM) to
learn a low‐dimensional manifold where clusters better rep-
resent the key spectral variations. In each case, the learned
representations define class categories that can then label new
spectra [Marzo et al., 2009]. Cluster centroids correspond to
representative mineral types; they do not generally include
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the purest samples or spectral anomalies. Such methods are
of particular interest where the linear mixing model does
not hold or where one wishes class categories to follow the
statistical distribution of the data.
[12] Automatic end‐member detection is well suited for

mineralogical search in planetary data sets because it is not
necessary to know the constituent spectra in advance. This
increases the likelihood of detecting novel minerals that are
highly mixed or present in subtle quantities in intimate mix-
ture. Despite a growing body of research on the topic, cited
use of automated end‐member detection for planetary data
sets is relatively rare [Parente and Bishop, 2010]. Most cur-
rently cited methods for end‐member detection are sensitive
to any noise or instrument artifacts present in even one pixel
thus requiring extensive data cleaning. Unfortunately, subtle
absorption features near the level of noise would then be
erased. These algorithmic limitations have largely precluded
automated end‐member detection in what would otherwise be
a natural application.
[13] The following section presents a new approach for

applying end‐member detection techniques to superpixel
representations of a given hyperspectral image. To our
knowledge no prior effort has used superpixels to describe
hyperspectral data. This new image representation leverages
spatial relationships to reduce noise while preserving key
spectral features. Several previous studies have demonstrated
using spatial information to improve end‐member extraction
[Plaza et al., 2002; Zortea and Plaza, 2009; Zhang et al.
2008; Rogge et al., 2007]. Superpixel representations are
a new instance of this strategy, and can potentially make
automated end‐member analysis more relevant for planetary
data sets.

2. Methods

[14] Broadly speaking our method consists of two stages:
an initial superpixel segmentation for noise reduction fol-
lowed by end‐member detection to identify salient minerals.
The two together are complementary: the first analyzes local
pixel relationships spatially and spectrally, while the second
performs a scene‐wide statistical analysis on the resulting
spectra. Here we describe each step in detail and the tech-
niques for evaluating the resulting detections for “focus of
attention” cues in mineralogical search.

2.1. Image Data Sets

[15] The CRISM imaging spectrometer aboard MRO
acquires data over the 362–3920 nm spectral range. The
instrument includes two separate detectors that acquire
light over the 362–1053 nm range (S detector) and the 1002–
3920 nm range (L detector). CRISM collects data in two
primary modes: a high‐resolution targeted mode and a mul-
tispectral survey mode [Murchie et al., 2007a]. The full‐
resolution target (FRT) images acquire 544 wavelength
channels over a ∼10 × 10 km area at ∼18 m/pixel. For this
work, we utilize only the L‐channel for the FRT data. Mul-
tispectral reduced data records (MRDR) comprise 72 chan-
nels at 200 m/pixel. The CRISM data are converted to I/F
(the ratio of radiance to solar flux measured at the top of the
atmosphere), through a series of radiometric, atmospheric and
geometric calibrations as described byMurchie et al. [2007a,
2007b, 2009a]. This procedure includes a “flat field” cor-

rection based on multiple measurements of a bland dusty
region in order to correct residual nonuniformities in cali-
bration. MRDR data are delivered to the NASA Planetary
Data System (PDS) as a map‐projected product and not
processed further. However, the standard CRISM FRT I/F
data product still contains some column‐wise variation, spike
and shot noise. A set of standard and accepted correction
procedures have been incorporated into the CRISM Analysis
Tool (CAT v. 6.3) installed as a plug‐in under ITT VIS ENVI
4.5. These include a photometric correction that accom-
modates nonnormal solar illumination, and an atmospheric
correction applied initially to Infrared SpectroMeter (ISM,
aboard Phobos 2) [Bibring et al., 1989] and Observatoire
pour la Minéralogie, l’Eau, les Glaces, et l’Activité
(OMEGA, aboard Mars Express) data [Mustard et al., 2005;
McGuire et al., 2009]. It also contains a noise removal and
destriping algorithm to address thermal effects, radiation and
intrinsic detector measurement error [Parente, 2008; Parente
et al., 2010]. We apply this standard CAT processing to the
data. CAT spectral summary products are calculated for FRT
and MRDR images and used for algorithm validation.
[16] The Moon Mineralogy Mapper (M3) imaging spec-

trometer aboard the Chandrayaan‐1 lunar orbiter was designed
to collect data over the spectral interval 430–3000 nm. This
instrument also operates in two modes: a full‐resolution
mode records 261 channels at a nominal spatial resolution of
70 m/pixel, and a global mapping mode that records 85 bands
at a nominal spatial resolution of 140 m/pixel. The scene used
in this study was acquired with an instrument operating in the
mapping mode over the spectral interval 461–2992 nm. Data
are delivered to the PDS as radiometrically corrected radiance
(W/m2 mm sr) with ENVI headers; details are described by
Lundeen et al. [2010].

2.2. Image Preprocessing

[17] An initial preprocessing performs a light, preliminary
pixel‐wise cleaning and prepares the spectra for further
analysis. We found for CRISM FRT data that some local shot
noise persisted after the standard CAT correction procedure.
In particular, some thermal switching effects [Parente et al.,
2010] remain. A radius 3 median filter in the spectral domain
proved an effective remedy; it appeared to improve perfor-
mance for all subsequent analyses so we incorporated it as a
standard preprocessing step that we applied identically to all
images in this study. Despite the theoretical possibility of
diluting subtle spectral features, the filter is narrower than all
of the diagnostic absorption bands we consider, and we found
the removal of obvious channelized shot noise and other
single‐pixel artifacts to be net beneficial for performance of
all subsequent analyses.
[18] For each data set, we subset the spectral domain to

exclude the noisiest short‐wavelength channels as well as
strong thermal emission effects; we use the 1002–2602 nm
channels for the CRISM data and 750–2737 nm forM3. In the
case of M3 data, we perform an approximate reflectance
computation by normalizing each spectrum to have unit area
under the curve; this involves scaling the overall magni-
tude and dividing the spectrum by the sum of reflectances
in all bands. This ensures that all spectrum magnitudes are
approximately equivalent across incidental change in illu-
mination due to camera position and surface geometry. We
subsequently divide by the mean spectrum of the image to
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mask the contribution of the incident spectrum and base
substrate. For a nonemissive Lambertian surface, we found
that these simple steps mitigated interimage variation and
emphasized absorption features. The M3 preprocessing pro-
duces spectra that are not true reflectance values, but are still
amenable to end‐member detection and subsequent com-
parison to mineral reflectance spectra in spectral libraries.
This is adequate for target detection, but we naturally dis-
courage the use of these spectra for authoritative mineralog-
ical identifications or abundance estimation.

2.3. Superpixel Analysis

[19] Superpixel analysis partitions the image into a set of
spectrally homogeneous regions, exploiting our expectation
that physical features are spatially contiguous (Figure 1).
Ideally, each superpixel corresponds to a single scene feature
(e.g., an outcrop, crater, or volcanic flow), and its component
pixels are independent reflectance measurements of a single
surface material. A superpixel’s mean spectrum is a good
estimator of this reflectance, and the set of all such superpixel
spectra acts as a compact, noise‐reduced description of the
scene features. Naturally, the best noise reduction would be
achieved by superpixels that are as large as possible, such that
each physical feature is associated with just one superpixel.
Unfortunately this “perfect segmentation” is difficult to
achieve in practice (even by hand) and risks diluting or
erasing small physical features whenever a single large
superpixel overlaps multiple materials. As a compromise, one
can still glean noise reduction benefits by erring on the side of
oversegmentation such that most or all scene features are
associated with multiple superpixels, but no single superpixel
crosses the border of a physical feature. The appropriate mean
size of the superpixels in a scene is determined by the amount
of noise present and the smallest area of contiguous scene
features one aims to preserve.
[20] For this work we favor a simple graph‐based seg-

mentation algorithm by Felzenszwalb and Huttenlocher
[2004]. We will review it briefly here and refer the reader
to Thompson et al. [2010] for a more detailed description
of the implementation. We treat the pixels of the image as an
8‐connected graph of nodes (Figure 2). A spectral distance
metric defined by the user defines a weight on every edge of
the graph and permits comparison between neighboring
spectra. It also defines a “minimum distance” between
neighboring superpixels, given as the smallest distance

associated with any edge that bridges the two superpixels. For
our work we use a Euclidean distance metric but others are
possible such as the Spectral Angle or a more sophisticated
user‐defined distance score that emphasizes key spectral
bands. The algorithm iteratively agglomerates pixels into
larger clusters while attempting to maintain the internal
spectral homogeneity of each superpixel. A final “region
joining” step merges superpixels that are smaller than a pre-
defined minimum region size onto their next spatially closest
superpixel. The final output is a membership mapping
between individual pixels and the superpixel to which they
belong. These superpixels may then have their average
spectrum calculated, producing a set of cleaner spectra
numbering far less than the original data set (often by two
orders of magnitude or more). This final spectral set manifests
significantly reduced spectral noise without the diluting
effects a simple spatial average would incur while also

Figure 1. Superpixel segmentation. (left) Original subimage from CRISM FRT00003e12. (middle)
Coarse superpixel segmentation. (right) Fine superpixel segmentation.

Figure 2. Superpixel segmentation process. The superpixel
segmentation algorithm iteratively merges adjacent clusters
of spectrally similar pixels (white squares) based on pairwise
spectral differences along the border pixels. Here the algo-
rithm considers a merge between segments Sa and Sb. The
image pixels v1 and v2 are the most similar border pixels.
Their difference defines a minimum distance between the
two segments Dif(Sa, Sb). The algorithm compares this value
to intersegment distances of the minimum spanning tree in
each independent segment (illustrated here by thick black line
segments) to determine if the two segments can be merged.
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reducing computational requirements for later processing
due to the smaller number of spectra to further process.

2.4. End‐Member Detection

[21] After transformation to superpixel spectra, an auto-
mated end‐member detection step derives pure constituents
based on statistical properties of the data. This stage dis-
regards spatial information, operating on the entire list of
independent superpixel spectra from the first stage. Here we
presume a simple linear mixing model in which each
observed spectrum is a linear combination of the reflectance
spectra of the scene end‐members. For this model, the
Sequential Maximum Angle Convex Cone (SMACC) algo-
rithm [Gruninger et al., 2004] was identified as a top per-
former in a previous cross‐planet and cross‐platform study of
superpixel end‐member detection [Thompson et al., 2010].
The SMACC algorithm functions bymaintaining a list of best
end‐member candidates, and grows it iteratively by adding
the spectrum with the largest orthogonal projection onto the
subspace spanned by the current set of end‐members. This
procedure identifies a subset of the spectra that spans the
largest possible data volume. A second method called
N‐FINDR was also evaluated; it represents the class of end‐
member detection algorithms that indentify all end‐members
simultaneously. In these tests, SMACC offered comparable
performance as well as a significant speed advantage over
N‐FINDR, so we will use it exclusively here.
[22] The result of the end‐member detection operation is

a list of n end‐member spectra, where the user defines n at
runtime. In addition to the mean spectra, the algorithm can
supply the superpixel regions associated with each end‐
member (e.g., as regions of interest in ENVI) so that the user
can trace the mineralogical signatures back to specific regions
in the scene. By permitting the algorithm to detect more end‐
members, the user receives a more complete description of
the data that is more likely to include subtle mineralogical
signatures. The cost of this additional sensitivity is additional
human analysis time for the larger candidate spectra list
and redundant end‐members that are only subtly different.
We anticipate users with CRISM‐like images will commonly
request between 5 to 20 end‐members depending on the
inherent complexity of the scene, the subtlety of the antici-
pated features, and the time available to analyze the results.
[23] In our experience, the basic procedure generalizes

without difficulty to a range of instruments and scenes. The
two user‐defined parameters, the size of the superpixels
to extract, and the number of end‐members to return, are
stable across data sets. Previous experiments used identical
parameter settings for hyperspectral images as diverse as
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
Cuprite, NV data and the Galileo NIMS data; these trials
demonstrated consistent performance across data sets
[Thompson et al., 2010; Bunte et al., 2011]. For SMACC‐
based end‐member extraction, the scene was usually best
described by the top 10–20 end‐members and a minimum
superpixel size of 50 image pixels. Naturally, radically dif-
ferent spatial resolutions may still require changes; in the
multispectral data sets referenced later a minimum superpixel
size of 10 is used to accommodate the fact that the anticipated
scene features are much smaller with respect to individual
pixels.

[24] These end‐member spectra may be scientifically
interesting in themselves, but here we are concerned with
their utility as a “focus of attention” tool to identify and
localize novel mineralogy. One natural method to evaluate
this is by generating spectral angle intensity maps by pro-
jecting all image superpixels onto each end‐member spec-
trum. This yields a new image of n channels, which are then
assigned to a mineralogical class by the user. Both end‐
member maps and CRISM summary products localize key
mineral signatures in the image, but using distinctly different
approaches. The CRISM summary products leverage hand‐
tuned spectral features designed for specific mineralogical
slope and absorption features, while the superpixel end‐
member detection method operates in a mostly data‐driven,
unsupervised fashion. It relies only on statistical properties of
the data and a few weak assumptions about how they are
generated (spatial continuity, linear mixing). We hypothesize
that the combination of superpixel averaging to reduce scene‐
specific noise and our data‐driven classification approach can
provide additional utility for these analyses by finding spec-
tral features that were not anticipated beforehand.

2.5. Evaluation as a Focus of Attention Cue

[25] We performed experiments aimed to quantify both the
intrinsic value of superpixel end‐member detection as a focus
of attention tool in and of itself and vis a vis the CRISM
summary products in common use. Any such comparison is
limited by the fact that no ground truth mineralogy is avail-
able for the CRISM data set. Rather than recover “true”
mineralogy, we will quantify the ability of each method to
discriminate between the key distinctions identified by a
trained geologist’s thorough manual study. We begin by
selecting a series of images from current studies and the
CRISM literature whose mineralogy is well characterized
[Bishop et al., 2008a; Milliken et al., 2008; Ehlmann et al.,
2009, 2010; Murchie et al., 2009b; Lichtenberg et al.,
2010]. We manually label most pixels in the image as
members of distinct mineralogical classes by identifying
spectral end‐members and applying a Spectral Angle Mapper
(SAM) classification [Kruse et al., 1993] that is adjusted
empirically. These are not absolute mineralogical classifica-
tions; instead, they indicate general mineral categories and
best guess estimates at the principal distinctions in surface
material. Not all pixels in the image are classified; those with
highly mixed or ambiguous mineralogy may be left unla-
beled. The end result is a manual mineralogical classification
that defines a “ground truth” by which to judge the focus of
attention tools’ power to distinguish materials of interest.
[26] Formally, for an image with m manually defined

mineral classes we define m different detection problems,
each of which can be treated as a separate binary classification
task with the goal of recovering a specific mineral type. In
other words, a focus of attention image should correlate with
manual classifications such that one could threshold the map
at some value and recover the manual classification. The best
threshold is unknown, so our approach measures the true
positive and false positive detection rates for every possible
threshold. This receiver operating characteristic (ROC) curve
[e.g., Fawcett, 2006] quantifies the discriminative power of a
single end‐member to find a single target material.
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[27] Example ROC curves are shown in Figure 3. The
horizontal axis gives the false positive rate: the fraction of
nonmineral pixels that are detected for a particular threshold.
The vertical axis shows the true positive rate, defined as the
fraction of real mineral pixels that are detected. A naïve
detection strategy that chooses pixels at random would show
no preference for mineral or nonmineral pixels and would
detect each in proportion to its abundance in the scene.
Therefore it would have theoretical performance equal to a
diagonal line and a 0.5 area under the ROC curve. More
discriminative approaches move the curve to the upper left, in
which few false positives are required to detect themajority of

true positives. For subtle target features subtending a small
fraction of the scene, the most important regime is the
extreme left of the curve representing thresholds that select
only a small portion of image pixels. This represents a situ-
ation where the analyst has used a strict threshold to find
isolated or rare mineralogy.
[28] The total area under the ROC curve (AUC) is often

used as a proxy for average classification performance when
comparing two classifiers. The AUC represents the proba-
bility that a randomly chosen true positive instance will have
a higher classification performance score than a randomly
chosen true negative instance [Fawcett, 2006]. The AUC is

Figure 3. Receiver operating characteristic (ROC) curves evaluating the performance of the superpixel
(SUPER)method and six CRISM summary products to classify the four target materials identified manually
in image FRT000098b2. A perfect classification (all true positives and no false positives) plots on the top left
portion of Figures 3a–3d; a random (poor) classification plots as a line with slope of 0.5 (true positives =
false positives).
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computed for end‐member spectra selected by the superpixel
end‐member detection method as well as for relevant CRISM
summary products for comparison. Formminerals and n end‐
members, n × m such comparisons are possible but it is likely
that only one or two end‐members (or CRISM summary
products) are relevant for each manually defined mineral
type. Thus, we will consider only the top‐performing end‐
member and relevant CRISM index for each of the mmanual
categories, where the area under its ROC curve determines
the top performer.

3. Results

3.1. Evaluation of the Method

3.1.1. Performance of Method as Compared to Manual
Selection of End‐Members in CRISM Full‐Resolution
Images
[29] We manually identified 35 spectral classes in

8 CRISM FRT images. These classes include spectra that
appear to be dominated by a single mineral (e.g., olivine,
opaline silica), mineral classes (e.g., sulfates, phyllosilicates),
and regions that were relatively spectrally flat or neutral
(Table 1). In each run, the minimum superpixel size was set to
50, and 10 end‐members were solicited. In every image, the
superpixel method successfully identified each class (n = 4 or
5) that was identified in the manual labeling (Figures 4 and 5).

[30] The remaining 5 or 6 end‐members identified by
the algorithm generally consisted of additional examples of
the manually identified classes. A typical example is image
FRT000098b2 (hereafter “98b2” for this and other CRISM
FRTs; Figures 4 and 5). Four classes were identified manu-
ally: a monohydrated sulfate, a polyhydrated sulfate, a
weathered polyhydrated sulfate and a spectrally neutral class.
For two of the classes, the algorithm identified two exam-
ple end‐members that are spectrally similar but that differ
in albedo and/or the shape of the noise, particularly in the
1.5–1.8 mm region. Albedo likely also contributed to the
algorithm’s selection of two shadow end‐member spectra
(Figure 5d). In image 98b2, the algorithm also identified a
spectral end‐member that was overlooked in the manual
labeling. This class is consistent with a ferric hydroxysulfate
identified by Lichtenberg et al. [2010] (Figure 5e).
[31] Example ROC curves for the superpixel end‐member

detection and CRISM index methods are shown in Figure 3
and are typical of the data set. The ROC curves plot in the
top left portion of Figures 3a–3d corresponding to a high true
positive rate (high sensitivity) and low false positive rate
(high specificity). SAM maps of class end‐members con-
structed at low false positive rate thresholds agree well spa-
tially with manual classification (Figure 6).
[32] The average performance of the superpixel segmen-

tation and SMACC end‐member detection is evaluated using

Table 1. CRISM Summary Products Used in ROC AUC Analysisa

CRISM Scene FRT0000xxxx Spectral Class Sourceb Highest‐Ranking Acceptable CRISM Index

3e12 Olivine 1, 2, 3 OLINDEX, sensitive to olivine
Fe/Mg Smectite 2, 3 D2300, depth of 2300 nm absorption
Magnesite 3 BDCARB, sensitive to carbonate
Neutral BDI2000, depth of 2000 nm absorption

3fb9 Phyllosilicate D2300
Carbonate 4 BDCARB
Olivine OLINDEX
Neutral BDI2000

863e Nontronite D2300
Kaolinite 5 BD2210, depth of 2210 nm absorption
Fe/Mg Smectite 5 D2300
Montmorillonite 5 BD1900, depth of 1900 nm absorption
Neutral BDI2000

abcb Kaolinite 3, 6 BD2210
Serpentine 3, 6 D2300
Olivine 6 OLINDEX
Neutral BDI2000

7d87 Gypsum BD1900
Sulfate 7 SINDEX, sensitive to sulfates
Kaolinite 7 BD2210
Neutral BDI2000

5814 Sulfate 8 SINDEX
SiOH 8 BD1900
Neutral 1 VAR, sensitive to olivine and pyroxene
Neutral 2 BD1000IR, depth of 1000 nm absorption
Neutral 3 ISLOPE1, sensitive to ferric coatings on dark rocks

98b2 Monohydrated sulfate 9 BD2100, depth of 2100 nm absorption
Ferric Hydroxysulfate 9 BD1900
Polyhydrated Sulfate BD1900
Neutral BDI2000

64d9 Fe/Mg Smectite 2, 3 D2300
Phyllosilicate BD1900
1 mm‐rich dust OLINDEX
Low‐Ca Pyroxene 2 BDI2000
Neutral ISLOPE1

aCRISM index names from Pelkey et al. [2007] and Roach et al. [2009].
bSources are 1,Mustard et al. [2008]; 2,Mustard et al. [2009]; 3, Ehlmann et al. [2009]; 4, Ehlmann et al. [2008]; 5, Bishop et al. [2008a]; 6, Ehlmann et al.

[2010]; 7, Murchie et al. [2009b]; 8, Milliken et al. [2008]; 9, Lichtenberg et al. [2010].
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area under the ROC curve data (Figure 7). All AUC values
lie between 0.5, which is the value of random guess and 1,
which is a perfect discrimination of mineral end‐members.
For example, an AUC value of 0.90 means that 90% of the
time, any pixel containing a particular mineral has a classi-
fication statistic value for that mineral greater than that of any
pixel that does not contain that mineral. Typically AUC
values are treated like an academic grading system, where a
value ≥90 is considered excellent discrimination, ≥80 good,
etc. The AUC values for the superpixel method cluster very
close to 1, with a mean value of 0.97 ± 0.07 and a median
value of 0.998. The superpixel method superbly discriminates
the spectra of target materials.
[33] While the average AUC statistic is excellent, it is

useful to examine the mineral classes with the poorest per-
formance. All of the data (n = 5) that score <0.946 belong to
one of two images, 64d9 and 5814. In both images, some
spectral end‐members were difficult to isolate manually
because the targets contained mixtures of minerals in varying
proportions. In this situation, the hand‐labeled end‐members
meet a conservative (and arbitrary) threshold criterion, where
the spectra of member pixels were dominated by a particular
mineral, but often contained other minerals. A superpixel
containing a mixture of the two minerals will match the
“ground truth” best only for the most conservative criteria
(lowest false‐positive rates), which are likely the pixels with
mixtures that best mimic the proportions in the ground truth
data.

3.1.2. Performance Compared to CRISM Summary
Products
[34] To compare the superpixel end‐member detection

strategy with the current practice, we also generated ROC
statistics for each of the CRISM spectral summary param-
eters. An acceptable CRISM index was identified for each
mineral class (Table 1). Some classes could have more than
one acceptable CRISM index, for example, many phyllosi-
licate minerals have both an absorption near 2300 nm that
corresponds to the D2300 CRISM index and an absorption at
1900 nm (BD1900 index, see Table 1 for index explanations).
Acceptable CRISM index matches for spectrally neutral end‐
members in a scene included parameters associated with
mafic mineralogy (BDI2000, VAR, OLINDEX, BD1000IR)
or ferric dust (ISLOPE1). The ROC curve of the highest‐
ranking acceptable CRISM index was compared to the
superpixel end‐member data.
[35] ROC area under the curve statistics show that the

CRISM summary products perform significantly better than
random in the majority of cases (Figure 7). It is important to
note that in 5 of the 11 cases where the CRISM method
performs poorly (<0.80), it is classifying end‐members
labeled as spectrally neutral. The CRISM parameters were
designed to detect specific minerals and most spectrally
neutral pixels have no obvious or standard mineral assem-
blage. Thus, for parity, we omit the neutral pixel data from the
mean AUC statistic to report a mean AUC value for the
CRISM data of 0.87 ± 0.12 and a median value of 0.899.
[36] The superpixel end‐member strategy performs better

on average than the CRISM summary products for 97% of the
cases (n = 34). Examination of the shape of the ROC curves
show agreement with the AUC statistic, where in most cases,
the superpixel ROC curve lies to the upper left of the CRISM
index indicating its higher average accuracy (Figure 3). The
ROC curves can also be used to evaluate the performance of
the CRISM summary products. Figure 3 shows ROC curves
generated for 6 CRISM summary products for each the four
classes identifiedmanually. The top three performing CRISM
summary products for the monohydrated sulfate are BD2100,
D2300, and SINDEX. Examination of the spectrum of this
class (Figure 5a) shows absorptions at 2.11 mm and 2.39 mm
consistent with the BD2100 and SINDEX [Pelkey et al.,
2007; Roach et al., 2009]. The D2300 response may be the
result of a spectral slope induced by the sharp 2.39 mm band
(Figure 5a). The near‐diagonal line performance of
BD1400H2O (depth of 1400 nm absorption) on each of the
ROC curves shows that this metric has no predictive capa-
bility for the materials in this scene. Examination of Figure 3a
also shows two summary products that perform worse than
random at low false positive rates. These summary products
are sensitive to something in this scene, but this information is
incorrectly applied.
[37] As determined by the AUC statistic, the three top

performing CRISM summary products for both polyhydrated
sulfate classes are BDCARB, BD1900, SINDEX, respec-
tively. While the BD1900 and SINDEX summary products
are tied to diagnostic mineral absorptions in polyhydrated
sulfates and are expected to perform well, the BDCARB
index is likely responding to the paired 2.39 and 2.53 mm
absorptions in these spectra (Figures 5b and 5c). These
absorptions are typical of several polyhydrated sulfates (e.g.,
melanterite, rozenite) in addition to carbonates; melanterite

Figure 4. CRISM image FRT000098b2 in Aram Chaos.
RGB = 2.51, 1.49, and 1.09 mm. North is up. Four classes
are identified manually and are numbered: Class 1 (white
tones) is monohydrated sulfates, class 2 (blue tones) is poly-
hydrated sulfates, class 3 (green tones) is weathered polyhy-
drated sulfates, and class 4 (purple tones) is spectrally neutral
materials. Ten spectral end‐members identified by the auto-
mated superpixel algorithm are indicated by regions of inter-
est of varying colors (circled) and are keyed to spectra in
Figure 5.
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was suggested as a candidate mineral in this image by
Lichtenberg et al. [2010]. Although the SINDEX has the 3rd
ranked AUC statistic, the ROC curve shows that this index
performs poorly under the conservative criterion of low false
positives. The SINDEX performs well only at the expense of
a large number of false positive detections and is thus not as
sensitive indicator of this polyhydrated sulfate class as
BDCARB or BD1900.
[38] In general, both the superpixel technique and CRISM

summary products appear to work comparably at the highest
AUC values (>0.90), and the performance of both methods
degrades in concert (Figure 7). Like the superpixel strategy,
the CRISM summary products also perform poorly on images
64d9 and 5814, which supports the idea that the spectral
end‐members in these images were not well represented by
the pure mineral targets of the CRISM summary products.
This result is consistent with the end‐members being mix-
tures of materials in varying abundances or being spectrally
featureless.
3.1.3. Performance in Other Data Sets
[39] One advantage to the superpixel method is its adapt-

ability to a range of hyperspectral data sets. The method has
been demonstrated on AVIRIS [Thompson et al., 2010] and
NIMS data [Bunte et al., 2011]. Here we describe three proof‐
of‐concept experiments to demonstrate the potential appli-
cation of this method to new issues.
3.1.3.1. CRISM MRDRS
[40] A primary motivation for the development of the

superpixel method was to produce an automated method that
could analyze large data sets quickly enough to allow rapid
decision making about subsequent observations. A CRISM
MRDR scene (t0943_mrrif_05s343_0256_1, hereafter
“943”) in Iani Chaos was analyzed using the superpixel
method, setting the number of requested end‐members to
10. Compositional and geomorphic mapping of this region
[Gilmore et al., 2010] identified several sulfate deposits lying

among units that are spectrally flat in the 1.0–2.6 mm region
(Figure 8a, in pink). Three of the 10 end‐members comprise
sulfate; the remaining end‐members included several exam-
ples of the spectrally neutral materials, shadow and bright
materials. Three sulfate end‐members were identified using
the superpixel method and a mineral map produced using
the SAM algorithm (Figure 8b). Note the good spatial
correspondence of the automatically derived end‐members
(Figure 8b) to the sulfates mapped manually (Figure 8a).
The automated end‐members also compare well spatially to
results of the SINDEX (Figure 8c). Comparison of the
superpixel method and the SINDEX (single pixel method)
shows some potential advantages of the former. As expected,
the superpixel averaging and the preprocessing filtering result
in a less noisy image prior to classification. These noise
reduction steps may amply true signals that could be lost in
per pixel classification scheme (e.g., the site indicated by the
arrow in Figure 8b versus Figure 8c). Because the superpixels
are clustering pixels of like spectral character, the resulting
classification identifies spatially contiguous regions that
are more likely to represent real geologic phenomena. For
example, the sea green unit in Figure 8b is a reasonable match
for sulfates, but also a match for another spectral unit on the
mesa tops that warrants further investigation.
3.1.3.2. Chandraraayan‐1 M3 Data
[41] An M3 image for a region on the lunar nearside was

analyzed to estimate the utility of this method for this newly
released data. Twenty end‐members were solicited for this
spatially large image (∼4.2 × 106 pixels), with a minimum
superpixel size of 20. Ten of the end‐members exhibit
two absorptions at ∼1000 and 2000 nm consistent with the
mineral pyroxene (Figure 9, spectra 1, 4, 6, 8, 11, 12, 14, 16, 18).
High‐Ca clinopyroxenes, with absorptions ∼980 and
∼2100 nm (e.g., spectra 1 and 12), can be distinguished from
low‐Ca clinopyroxenes or orthopyroxenes with absorptions
∼940 nm and ∼1900 nm (e.g., spectra 6, 8, 18 [e.g., Adams,

Figure 5. Averaged spectra of spectral classes indentified manually (black) and spectral end‐members detected automati-
cally (colors) in image FRT000098b2. The colors of the end‐member spectra are keyed to the same hued regions of interest
(ROIs) in Figure 4. (a) Monohydrated sulfate class, (b) polyhydrated sulfate class, (c) weathered polyhydrated sulfate class,
and (d) spectrally neutral class, including the shadow end‐member class (green and purple spectra). (e) The “coral” end‐
member class was detected only by the automated method and is consistent with ferric hydroxysulfate identified by
Lichtenberg et al. [2010]. Ratioed spectra in each image are black (or colored) spectrum/yellow spectrum of Figure 5d.

Figure 6. Image classification results (in black) for monohydrated sulfates. (a) CRISM image
FRT000098b2; bands as in Figure 4, monohydrated sulfates appear white. (b) Manual classification
mapped using Spectral Angle Mapper (SAM). (c) Automated superpixel classification mapped using SAM.
(d) Threshold map for CRISM index BD2100, an indicator of monohydrated sulfate.
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1974]). Olivine spectrally dominates end‐members 5 and 17,
recognized by a broad absorption ∼1050 nm [e.g., Hunt and
Salisbury, 1970]. Plagioclase‐rich materials lack prominent
absorptions [e.g., Hunt and Salisbury, 1970] and thus may or
may not be represented by several of the linear spectra (e.g.,
15, 19), some of which show an increasing reflectance toward
longer wavelengths in noncontinuum removed spectra as has
been documented for lunar highland rock powders and soils
[Pieters, 1993].
[42] All of the automated end‐members (n = 16) that were

not noise are located within craters or, in one case, a graben
(Figure 10). Noisy spectra were identified by the user and
typically included sharp discontinuities. Lunar craters expose
fresh materials from beneath weathered regolith. This is seen
in Figures 10a and 10b where olivine‐rich materials exposed

Figure 7. Area under the ROC curve (AUC) statistic for each
spectral class (e.g., mineral x in image y) classified by both the
superpixel SMACC method and CRISM CAT summary pro-
ducts method (see Table 1). A value of 1 is a perfect classifi-
cation. Open squares represent pixels classified manually as
spectrally neutral; CRISM summary products are not opti-
mized for their detection. Note overall poor performance of
both classifiers for images FRT00005814 and FRT000064d9
(gray diamonds).

Figure 8. (a) CRISM MRDR image 943 of Iani Chaos,
RGB = 2.46, 1.50, and 1.15 mm. Manually mapped sulfate
deposits are overlaid in pink. (b) SAM classification of sulfate
end‐members identified by semiautomated superpixel and
end‐member extraction methodology. Pink, coral, and sea
green hues correspond to sulfates; bright green corresponds
to pixels that are classified as nonsulfate materials or unclassi-
fied. (c) SINDEX classification of scene, where blues are low
values and reds are high values. Note the good spatial agree-
ment between the SAM result and mapped sulfate deposits.
Arrow indicates region where the superpixel strategy reduces
noise and results in a more spatially realistic classification.

GILMORE ET AL.: AUTOMATED SUPERPIXEL SEGMENTATION E07001E07001

11 of 19



in a crater wall have a stronger spectral signature that the
olivine‐rich materials in the adjacent regolith. Craters may
also excavate materials from depth that contain minerals not
plentiful on the surface. This may be the case in Figures 10c

and 10d where the largest crater in the scene (deepest exca-
vator) is associated with pyroxene‐rich materials. In a single
case, a spectral end‐member is detected in a graben wall
(Figures 10e and 10f). With a single absorption at ∼1190 nm,
this end‐member is unique among the 20, and its spatial

Figure 9. Automated spectral end‐members generated for
M3 image M3G20081119T021733; spectra are continuum
removed. Vertical lines at 1000 and 2000 nm are for refer-
ence. Olivine‐rich (e.g., 5, 17) and pyroxene‐rich (e.g., 1,
8, 11) materials are included, as well as noise (e.g., 10).

Figure 10. M3 images of selected superpixel/SMACC end‐
members. (left) RGB = 2178, 1529, and 1010 nm; olivine–
richmaterials appear red to yellow and pyroxene‐richmaterials
appear blue to green in this rendition. (right) The 750 nm band
with spectral end‐member ROI indicated in color (arrows).
End‐members recognize spectrally distinct materials exposed
on (a–d) crater and (e and f) graben walls. In Figure 10b,
spectrum of ROI is 5 in Figure 9; in Figure 10d, spectrum
of ROI is 6 in Figure 9; and in Figure 10f, spectrum of
ROI is 20 in Figure 9. Images are ∼30 km across.
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association with what may be a volcanic vent (Figure 10f)
invites further investigation. In each of these examples, the
superpixel‐augmented SMACC algorithm recognizes these
materials as spectral outliers because they are spectrally dis-
tinct from the bulk of the image. This tool is thus well tuned
for focus of attention and novelty detection tasks.

3.2. Case Study: Application to Ariadnes Chaos

3.2.1. Introduction and Methods
[43] Here we apply the superpixel/SMACC method to a set

of unstudied CRISM images to further evaluate its practical
and scientific utility as an analysis tool. We examine seven
CRISMFRT images in Ariadnes Chaos (Figure 11). Ariadnes
is one of several regions of chaos in Terra Sirenum and has
been interpreted to have once been part of a larger Late
Noachian/Early Hesperian paleolake system that was the
source region for Ma’adim Vallis [Irwin et al., 2004].
Examination of image data shows the floor of Ariadnes to
include relatively light‐toned mounds, covered by a darker
deposit that lies between and on top of the mounds [Irwin
et al., 2004] (Figure 11). Bright materials have been recog-
nized in other chaos regions on Mars and found to comprise
sulfates and Fe‐oxide minerals, consistent with evaporation
[e.g., Glotch and Rogers, 2007; Noe Dobrea et al., 2008;
Lichtenberg et al., 2010]. The mineralogy of bright materials
here may yield insight into the composition and duration of
waters that once occupied Ariadnes basin.
[44] The CRISM images were analyzed using Hii‐HAT

software (http://hyperspectral.jpl.nasa.gov), which incor-
porates the superpixel/SMACC algorithm. Our workflow
for using the automated superpixel segmentation and end‐
member detection technique includes (1) preprocessing,
(2) superpixel segmentation, (3) end‐member extraction,
(4) examination of the shape and location of individual

spectra, (5) ratioing of target spectra to spectrally neutral
spectra in the same instrument column to facilitate identifi-
cation, and (6) production of classification maps of target
end‐members to characterize class spatial distribution. The
classification maps are generated automatically in Hii‐HAT
for each end‐member using the Spectral Angle Mapper
[Kruse et al., 1993].
3.2.2. Results
[45] Ten end‐members were requested for each image, per

our experience with other CRISM FRT data. This resulted in
70 end‐members which were found to fall into one of 7 cat-
egories: (1) Fe/Mg smectites, (2) Al‐smectite, (3) sulfate,
(4) olivine, (5) spectra with a 2mmabsorption, likely pyroxene,
(6) spectrally flat, and (7) shadow.
3.2.2.1. Smectites
[46] Smectites are 2:1 phyllosilicate minerals typified

by absorptions at ∼1.9 mm due to H2O and ∼2.3 mm due
to cations in the octahedral site, often accompanied by
absorptions at ∼1.4 mm due to OH and ∼2.4 mm [e.g., Clark
et al., 1990; Bishop et al., 2008b]. The specific absorptions
vary as a function of composition. Nontronite (ideally
Na0.3Fe2

3+(Si, Al)4O10(OH)2•nH2O), the Fe end‐member, has
a band centers near 1.43 mm and 2.29 mm, while the Mg‐rich
end‐members hectorite (ideally Na0.3(Mg, Li)3Si4O10(OH)2)
and saponite (ideally (Ca/2, Na)0.3(Mg, Fe2+)3(Si, Al)4O10(OH2)•
4(H2O)) typically have absorptions at 1.38–1.39 mm and
2.31–2.32 mm; Al‐rich smectites typically display absorp-
tions at 1.41 mm and 2.21 mm [Clark et al., 1990; Bishop
et al., 2002a, 2002b].
[47] A number of spectra in Ariadnes have strong absorp-

tions at 1.91–1.92 mm and 2.30 mm consistent with a smectite
containing both Fe and Mg (Figure 12). Weaker absorptions
at 1.41 and ∼2.4 mmare common, but not ubiquitous, and also
consistent with smectite.While the 1.9 mm absorption is often

Figure 11. Image mosaic of Ariadnes Chaos. Base image is a THEMIS IR daytime 256 pixels/degree
mosaic, overlain by HRSC images h4209_000_nd3, h4187_0000_nd3, and h4187_0000_nd4. CRISM
footprints of FRT images used in this study are shown and labeled FRT0000xxxx.
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prominent, several spectra identified by the algorithm display
a weak 1.9 mm absorption and an absent 1.4 mm absorption
(Figure 12, samples from 7f7e and 656e). The strength of
these absorptions indicate that these materials have lower
water contents, also, weak bands such as the 1.4mmbandmay

be readily obscured by mixing with other materials (e.g.,
ferric dust [Ehlmann et al., 2009]).
[48] In image caf3, an end‐member is identified with pro-

minent absorptions at ∼1.4, ∼1.9, and 2.23 mm (Figure 12).
These characteristics are consistent with montmorillonite
(ideally (Na, Ca)0.3(Al, Mg)2Si4O10(OH)2•n(H2O)). The
absorption features are broader than those seen in laboratory
spectra; this effect has been noted in other CRISM spectra and
attributed to mineral mixing [e.g., McKeown et al., 2009].
3.2.2.2. Sulfates
[49] In the 1.0–2.6 mm region, OH‐ or H2O‐bearing sul-

fates are typified by absorptions at 1.4 mm due to OH, 1.9 mm
due to H2O, and a number of absorptions over the 2.1–2.6 mm
region attributed to OH or H2O combinations or overtones
and/or S‐O bending or stretching overtones [Hunt et al.,
1971; Bishop and Murad, 2005; Cloutis et al., 2006]. The
algorithm identified several end‐members with absorptions at
1.93, 2.40, and 2.53 mm, indicative of sulfates (Figure 13).
One class of sulfate end‐members (Figure 13, 7f7e spectra)
also contains a prominent 2.30 mm absorption that is broader
than seen in the smectite end‐members. We attribute the
strong 2.3 mm absorption in these spectra to smectite and
propose that these materials are a mixture of sulfate and
smectite. Another type of sulfate end‐member (Figure 13,
spectra of 12786 and 8c90) displays a strong 1.41 mm
absorption, a broad 1.9 mm band, and a steep 2.4 mm band,
typical of a range of Fe, Mg, and Ca polyhydrated sulfates.
3.2.2.3. Mafics
[50] In two images, the superpixel/SMACC algorithm

selected an end‐member with a deep, broad absorption cen-
tered on ∼1 mm (Figure 14). We identify this as olivine
(ideally (Fe, Mg)2SiO4). Two images also contain an end‐
member that is dominated by a broad absorption at ∼1.98 mm.
This is consistent with low‐Ca pyroxene, but should be ver-
ified with additional examination at shorter wavelengths.
3.2.3. Spectral Stratigraphy and Discussion
[51] The end‐members identified by the superpixel/

SMACC algorithmwere used to generate a classification map
for a given image, allowing an assessment of the geographic
distribution of end‐members. We present a typical example
of Ariadnes Chaos morphological and spectral stratigraphy
in Figure 15. The sulfates and smectites are limited to the
mesas and mounds that lie on the floor of Ariadnes Chaos
(Figure 15a). MRO’s Context Camera (CTX, 6 m/pixel) and
(High Resolution Imaging Science Experiment (HiRISE,
∼30 cm/pixel) images show that these materials have a high
albedo and are pervasively fractured on the tens of meters
scale; this bright and fracturedmorphology has been noted for
other deposits of sulfates and phyllosilicates at many loca-
tions onMars and attributed to desiccation [e.g., Bishop et al.,
2008a; Murchie et al., 2009b; Wray et al., 2011]. The frac-
tures often contain fill with a range of albedos; occasionally
this fill is exposed by differential erosion and stands higher
than surrounding bright material. The bright materials of the
mesas are in contact with dark materials that occupy the floor
of Ariadnes surrounding the mesas. The dark materials are
seen to onlap onto the edges of the mesas or may cover the
mesas entirely (Figure 15a). Thus the general history of the
region includes (1) the formation of the bright materials,
(2) their isolation into mesas and mounds, (3) the emplace-
ment of dark materials around and over the mounds, and
(4) erosion to expose bright materials in some of the mounds.

Figure 12. (a) CRISM spectra of smectite‐bearing materials
in Ariadnes Chaos. Spectra are averages of individual end‐
member regions selected by the superpixel/SMACC algorithm
ratioed by a spectrally neutral region of similar size. Image
labels refer to FRT0000xxxx. Major spectral absorptions are
indicated by vertical lines. (b) Spectra of smectites from the
CRISM spectral library: saponite is sample LASA52, non-
tronite is CBJB26, montmorillonite is 397F013, and hectorite
is BKR1JB172. End‐members 7f7e (red) and (maroon) are
keyed to colors in Figure 15.
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[52] The mineralogy recognized here displays a consis-
tent stratigraphy in Ariadnes Chaos, an example of which is
shown in Figure 15b.Where bright materials are exposed, the
chaos mounds have centers dominated by the sulfate/smectite
and smectite end‐members. The less hydrated smectites and
sulfate/smectites (e.g., the maroon end‐member in Figures 15

and 12) are often seen at mound edges, in contact with the
dark materials, where the less hydrated materials may follow
the contour of the contact with dark material. The spatial
relationship between the less hydrated smectites and the dark
materials suggests a genetic relationship and we propose that
the emplacement of the dark materials facilitated dehydra-
tion of underlying smectites. Although the dark materials are
spectrally flat, their centimeter to meter scale texture is con-
sistent with volcanic materials. Volcanic materials may have

Figure 13. (a) CRISM spectra if sulfate/smectite mixtures
in Ariadnes Chaos. Spectra are averages of individual end‐
member regions selected by the superpixel/SMACC algo-
rithm ratioed by a spectrally neutral region of similar size.
Image labels refer to FRT0000xxxx. Major spectral absorp-
tions are indicated by vertical lines. (b) Spectra of sulfates
from the CRISM spectral library: hexahydrite (ideally
MgSO4•6H2O) is sample LASF56A, melanterite (ideally
Fe2+SO4•7H2O) is LASF44A, jarosite (ideally (Na, K,
H3O)Fe3(SO4)2(OH)6) is F1CC11B, and rozenite (ideally
Fe2+SO4•4H2O) is BKR1JB626B. End‐members 7f7e (pur-
ple) and (yellow) are keyed to colors in Figure 15.

Figure 14. (a) CRISM spectra of mafic materials in Ariadnes
Chaos. Spectra are averages of individual end‐member
regions selected by the superpixel/SMACC algorithm ratioed
by a spectrally neutral region of similar size. Image labels
refer to FRT0000xxxx. Major spectral absorptions are indi-
cated by vertical lines. (b) Spectra of mafic minerals from
the CRISM spectral library: forsterite (ideally Mg2SiO4) is
sample C3PO51, enstatite (ideally Mg2Si2O6) is C5PE32,
diopside (ideally CaMgSi2O6) is C1PP61, and fayalite (ide-
ally Fe2SiO4) is C3PO59. End‐member 7f7e (blue) is keyed
to colors in Figure 15.
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heated underlying deposits and facilitated their dehydration.
Alternatively, the bright materials may be undergone desic-
cation at the surface prior to the emplacement of the dark unit.
[53] The sulfate mixtures and smectites are spatially inter-

mingled within the mounds. Analysis of CTX or HiRISE
images within the regions covered by the seven CRISM
images shows no obvious morphological or textural bound-
ary between the materials. There is also no obvious strati-
graphic relationship between the units. This, and the mixed
nature of the sulfate end‐member spectra, suggests that the
sulfates and phyllosilicates are not confined to individual
layers, but are mixed at the CRISM scale (∼18 m/pixel).
While both phyllosilicates and sulfates are indicators of
aqueous activity, they are produced in two different envir-
onments. Fe/Mg smectites are a common production of
weathering and require persistent water‐rock interaction in
a mildly acidic to alkaline environment [e.g., Velde, 1995;
Chevrier et al., 2007]. Sulfates are formed by the evaporation
of fluids. Thus the juxtaposition of smectites and sulfates
constrains their formation mechanism. One model posits the
formation of smectites under high water:rock conditions
followed at a later time by the precipitation of sulfates, per-
haps by the evaporation and S‐rich waters or the circulation of
S‐rich groundwater through the smectite deposit. Another
model is that the smectites and sulfates precipitated simulta-
neously under rapidly changing environmental conditions.
This situation is seen in some acid saline lakes in Australia
[e.g.,Baldridge et al., 2009]. Deposits containing both sulfate
and phyllosilicates have been to date observed rarely onMars,
and include Mawrth Vallis [Farrand et al., 2009], Columbus
Crater [Wray et al., 2011], Cross Crater [Swayze et al., 2008],

Terra Meridiani [Wiseman et al. 2008;Wray et al., 2009] and
Gale Crater [e.g.,Milliken et al., 2010]. The type, location and
admixture of sulfates and phyllosilicates in Cross Crater and
Columbus crater are interpreted to result from precipitation
in paleolakes with limited groundwater inflow, where water
levels are controlled by evaporation [Swayze et al., 2008;
Murchie et al., 2009b; Wray et al., 2011]. This may also be
the case for Ariadnes, where the light‐toned deposits are
limited to the lowest levels of the basin, below the level
required to incise Ma’adim Vallis (the region’s primary out-
flow) [Irwin et al., 2004; Moore and Howard, 2003], and
thus may represent the waning, more evaporative, phase of a
paleolake.
[54] The montmorillonite end‐member is associated with

crater materials in NW Ariadnes (Figure 11). Here a smaller
crater lies within a larger crater, where the ejecta of the larger
crater postdates the bright mounds on the floor of Ariadnes.
Olivine is exposed on the rim and floor of the larger crater.
Montmorillonite is exposed in the ejecta, walls and floor of
the smaller crater. Its limited geographic distribution may
indicate excavation of a smectite‐rich layer by the small
crater, or the production of smectite due to hydrothermal
alteration associated with the impact itself.
3.2.4. Summary
[55] The superpixel/SMACC algorithm within the

Hii‐HAT software is applied to the analysis of CRISM FRT
images in Ariadnes Chaos. The algorithm identifies a suite
of geologically meaningful end‐members and does so con-
sistently across the images. The compositional mapping
provided in Hii‐HAT allows a quick examination of the
distribution of the end‐members that could be compared

Figure 15. (a) CRISM image FRT00007f7e in Ariadnes Chaos. RGB = 2.51, 1.49, and 1.09 mm. North is
up. Ten spectral end‐members identified by the automated superpixel algorithm are indicated by regions of
interest of varying colors and are circled where emphasis is required. (b) Summary classification of the scene
using Hii‐HAT software. All pixels are grouped into one of the 10 end‐member classes using the Spectral
Angle Mapper algorithm. Light‐toned areas within the mesas are dominated by smectite and smectite/
sulfate mixtures.
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to other image data sets for geological interpretation. This
preliminary analysis shows the chaos mounds to include a
complex assemblage of phyllosilicates and sulfates requiring
both and perhaps alternating water‐rich and evaporitic con-
ditions. These minerals and their stratigraphy are consistent
with deposition from a paleolake at the bottom of the
Ariadnes basin. These materials were subsequently eroded
into mounds and later covered by dark materials we suggest
are volcanic. The emplacement of the dark materials may
have dehydrated the mound materials where in contact.

4. Discussion

[56] The automated superpixel segmentation and end‐
member detection strategy outlined here performs with high
accuracy in CRISM full‐resolution images. The method
correctly identifies each of the end‐members labeled manu-
ally. Part of the success of this strategy is superpixel seg-
mentation, which by averaging together spectrally similar
adjacent pixels reduces the noise in the end‐member spectra
[Thompson et al., 2010]. The superpixel segmentation is
similar to a noise reduction step in CRISM analyses fre-
quently reported in the literature, whereby the analyst man-
ually selects and averages regions of spectrally similar pixels
for noise reduction. Our automated approach requires few
assumptions about the physical characteristics of the scene
apart from spatial continuity of physical features. Repre-
senting the scene by small contiguous regions can better
capture the physical layout of materials on the surface and
facilitate automated identification of geologically meaningful
spectral units.
[57] The unsupervised classification approach described

here has several advantages appropriate for the analysis of
planetary data sets. Because the surface materials are not
known a priori, unsupervised classification strategies maxi-
mize the chances of identifying all end‐members in a scene
including materials that are not anticipated. This capability is
critical for finding novel or isolated spectral classes. This
approach is complimentary to supervised techniques like the
CRISM summary products and may reduce analysis time in
situations where supervised techniques give nonunique
results. For example for image 98b2, the ROC curves dem-
onstrate that some mineral classes are equally well repre-
sented by a number of CRISM summary products (Figure 3a),
thus the analyst must examine each potential index inde-
pendently to determine the type and distribution of a given
spectral class. The superpixel strategy might reduce analysis
time by delivering target end‐members to the analyst directly.
[58] A potential disadvantage of the unsupervised approach

is that because it by definition identifies the most spectrally
anomalous materials in a scene, there is potential for it to miss
common materials. For example in the M3 data, the pre-
scribed end‐members do not contain examples of the most
common materials in the scene, which are the numerous
spectrally distinct regolith materials (e.g., Figures 10a, 10c,
and 10e). Two factors may be contributing this nondetection
result. First, since common materials comprise most of the
data set they define and dominate the spectral average of the
scene they are not statistically distinctive. This issue can be
mitigated by expanding the search strategy to include a
greater number of end‐members for large scenes such as M3.
Also, the minimum superpixel size (20 pixels ∼0.4 km2) is

much smaller than the scale of many of the spectral units in
the scene, prioritizing the detection of small outcrops (e.g.,
the crater central peaks) at the expense of geographically
larger spectral units (e.g., mare lava flows). Increasing the
superpixel size may be a desired strategy to target spatially
large units in some data sets. Thus some experimentation may
be required by the user to optimize the number of requested
end‐members and superpixel size for a given data set. We
find that for the CRISM FRT data, 10 end‐members and
minimum superpixel size of 50 (∼0.02 km2) appropriately
captured all spectral units in the scene including spectrally
neutral classes and multiple examples of various end‐mem-
bers (Figures 5 and 15).
[59] The automated superpixel segmentation and end‐

member detection method also characterizes the data specific
to each scene, where relative spectral differences are maxi-
mized. This has the advantage of accommodating scene‐
specific noise or background materials. This was seen in
CRSIM FRT images 3e12 and 3fb9, where the 1 mm
absorption associated with olivine is present in the carbonate‐
rich spectra. The unsupervised scheme readily identifies
this spectral mixture as an end‐member in the scene. Mineral
mixtures are undoubtedly present on planetary surfaces
representing primary mineralogy or as contaminants; for
example, instrument noise, bad weather (e.g., high aerosols),
near ubiquitous ferric Martian dust, or local dust generated by
soft minerals such as sulfates [e.g., Bishop et al., 2009] are
readily observed. The enhanced performance measured by
the AUC statistic of the superpixel method over the CRISM
summary products is likely due to the algorithm’s ability
to recognize end‐members that are truer matches to target
(often mixed) materials. This effect can be seen graphically in
Figure 6, where the CRISM index detects the target mineral
well, but not exclusively.
[60] For the CRISM images, the automated method end‐

members included spectrally neutral regions. While not
optimal to control for in‐column instrument noise, these do
offer a way to quickly ratio spectra of interest to a neutral
spectrum as was done in Figure 5. Ratioing is a technique
reported in the literature to reduce noise in CRISM data and is
often especially helpful to mitigate the effects of an imperfect
atmospheric correction.
[61] While not directly relevant to accuracy, computation

runtime is an important practical consideration. Currently
the most onerous step is the median filter of the initial pre-
processing step, which can take as long as 30min on amodern
desktop processor. Generating the superpixel representation
takes less than 1min for the CRISMFRT images. Subsequent
steps are similarly fast thanks to the orders‐of‐magnitude
reduction in data volume with the superpixel representation.
The algorithms described in this work have been incorporated
into the JPL Hii‐HAT software suite as a plug‐in to the IDL/
ENVI analysis software. Individuals interested in using
Hii‐HAT are advised to visit http://hyperspectral.jpl.nasa.gov
for further information.

5. Conclusions

[62] We present a new application of superpixel seg-
mentation to the semiautomatic analysis of hyperspectral
planetary data sets. The method readily identifies spectral
end‐members in CRISM and M3 data that are geologically

GILMORE ET AL.: AUTOMATED SUPERPIXEL SEGMENTATION E07001E07001

17 of 19



reasonable and a good match to those identified by an expert,
facilitating a comprehensive assessment of spectral class
characteristics and distribution in a given scene. For CRISM
FRT data, we find the algorithm performs as well as the state
of the art analysis techniques. Furthermore, the superpixel/
SMACC algorithm (1) examines the entire data set, which
maximizes its ability to find minerals that are unanticipated
and (2) directly recognizes end‐member spectra which may
reduce analysis time.
[63] The success of the technique is due to the following

factors. Superpixel segmentation reduces scene‐specific
noise and promotes the discovery of spatially contiguous
spectral classes that are consistent with geologic phenomena.
The unsupervised classification step exploits the entire
spectral data set to enhance the discovery of novel mineral-
ogy. This method is also robust for the recognition of target
minerals within mixed spectra typical of planetary surfaces.
[64] The technique was applied to the analysis of Ariadnes

Chaos and consistently recognized several spectral classes
including smectites, sulfates and mafic materials. Aqueous
minerals are confined to the exposed centers of chaos
mounds. Smectites and sulfate materials are mixed at the
CRISM scale, consistent with precipitation under variable
environmental (wet/dry) conditions in a restricted paleolake.
[65] This semiautomated technique is shown to be adapt-

able to a number of hyperspectral data sets, which is perhaps
most relevant for data sets for which standard analysis tech-
niques do not yet exist. Thus it holds promise for the rapid
detection of spectral features of interest, reducing image
analysis time and enabling more comprehensive investiga-
tions of hyperspectral data from across the solar system.
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