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Abstract

West Nile (WNYV) is now established in the continental United States, with new human cases occurring annually in most states.
Mosquitoes in the genus Culex are the primary vectors and exploit urban stagnant water and swimming pools as larval habitats.
Public health surveys to monitor unmaintained pools typically rely on visual inspections of aerial imagery. This work demonstrates
automated analysis of airborne imaging spectroscopy to assist Culex monitoring campaigns. We analyze an overflight of Fresno
County, CA by the Airborne Visible Infrared Imaging Spectrometer instrument (AVIRIS), and compare the spectral information
with a concurrent ground survey of swimming pools. Matched filter detection strategies reliably detect pools against a cluttered
urban background. We also evaluate remotely sensed spectral markers of ecosystem characteristics related to larval colonization.
We find that commonly used chlorophyll signatures accurately predict the probability of pool colonization by Culex larvae. These
results suggest that AVIRIS spectral data provide sufficient information to remotely identify pools at risk for Culex colonization.
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1. Introduction

Remote sensing has long contributed to infectious dis-
ease prediction and warning systems (Linthicum et al., 1987;
Washino & Wood, 1994). Spatial epidemiological studies
have used satellite data to map environmental conditions as-
sociated with disease vector habitats. They typically corre-
late environmental variables such as land use, vegetation in-
dices, temperature, and elevation with relative vector abun-
dance or pathogen transmission (Beck et al., 2000; Kalluri
et al., 2007). Instruments used for this purpose include the
Advanced Spaceborne Thermal Emission and Reflection Ra-
diometer (ASTER) and Moderate Resolution Imaging Spec-
troradiometer (MODIS). Urban areas pose a special challenge:
they are heterogeneous collections of residential and commer-
cial areas, parks, and other land use types with potential vector
habitats on much smaller spatial scales (Reisen, 2010). Char-
acterizing these sparse microhabitats requires different remote
sensing techniques.

A particular concern is West Nile Virus (WNV), which
spreads in urban areas by transmission between birds and
mosquitoes in the genus Culex. These mosquitoes often colo-
nize stagnant water during their aquatic immature stages, and
features such as open containers or unmaintained swimming
pools provide key habitats (Caillouét et al., 2008; Reisen et al.,
2008). Unmaintained residential swimming pools, or green
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Figure 1: Culex mosquitoes in urban areas often use unmaintained “green
pools” as larval habitat. Image: Santa Clara Vector Control District (2013);
Franklin (2013)

pools, are especially problematic. These neglected pools be-
come stagnant with accumulated organic matter, and often har-
bor Culex pipiens mosquito larvae (Figure 1).

Current WNV mitigation efforts generally rely on street-level
monitoring and treatment campaigns. Previous work has used
remote sensing products such as airborne images to monitor in-
dividual pools, enabling more effective Culex treatment pro-
grams by identifying risk areas and flagging specific house-
holds for direct intervention. For instance, Reisen et al. (2008)
demonstrate an airborne survey of Bakersfield, CA with high
resolution color imagery. These images clearly reveal neglected
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green pools. However, manual inspection is necessary to cata-
log these habitats, so the approach is better suited for a sin-
gle snapshot in time than sustained monitoring campaigns that
track the evolution of the vector habitats. Since then, local
providers have continued to refine the manual image inspection
using GIS pool catalogs and higher spatial resolution (Franklin,
2013). There have also been efforts to automate the image anal-
ysis. Kim et al. (2011) propose a fully automated method to
locate pools in GeoEye satellite images, detecting pools from
a Normalized Difference Water Index (NDWI) score followed
by a morphological classification. This is effective at finding
pools, but assessing their condition still relies on manual in-
spection. To our knowledge no previous study has quantified
a link between remotely sensed pool color and Culex coloniza-
tion that would permit automated assessment of pool condition
from airborne instruments.

This study contributes to the literature in two ways. First,
we evaluate a new class of sensor — airborne imaging spec-
trometers — to assist Culex monitoring campaigns. These in-
struments, such as the Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS), typically measure reflected light over large
areas in wavelengths from 370 nm to 2500 nm. The wide band-
width and high spectral resolution permit a suite of powerful
approaches for pool detection and classification. In this work,
we apply a matched filter approach to identify pool locations.
Our second contribution is to quantify the relationship between
remotely observed spectral attributes and the presence of Culex
larvae. To this end, we combine AVIRIS imagery of an urban
environment with reference surveys by vector control authori-
ties. We construct models relating pool health to common spec-
tral indicators of water quality. The results indicate a strong re-
lationship between typical signatures of algal chlorophyll and
Culex colonization.

2. Methodology

2.1. Data Acquisition

Our study analyzed a survey overflight of Fresno, California
(USA) that took place on 30 Sept. 2011. WNV is endemic in
the area; the 2012 year had 24 confirmed infections in Fresno
County and 479 in the state at large, resulting in 19 fatalities
(California Department of Public Health West Nile Website,
2012). The Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) (Green, 2008) overflew the city on a Twin Otter tur-
boprop aircraft under clear atmospheric conditions, acquiring
spectra in the 370 — 2500 nm range with 10 nm spectral reso-
lution and 3.7 m ground sampling distance. It imaged 60 km?
of urban terrain with residential communities and commercial
districts with occasional parks, canals and open reservoirs. Fig-
ure 2 (Left) shows a typical orthorectified subframe. We ap-
plied the Atmospheric / Topographic Correction for Airborne
Imagery (ATCOR) algorithm (Richter & Schlipfer, 2012) to
compensate for scattering and absorption. At the same time
the AVIRIS measured radiances were normalized with the so-
lar irradiance to produce Hemispherical Directional Reflectance
Factors (Schaepman-Strub et al., 2006), hereafter “reflectance.”

In the weeks before and after the overflight, the Consol-
idated Mosquito Abatement District (MAD) conducted field
surveys of suspect swimming pools in the area. Inspec-
tors recorded pools as breeding or nonbreeding depending on
whether mosquito larvae were found. They also categorized
pool conditions as one of: Dry, if the pool was empty; Light
green, if the pool had low algal density indicative of a recent
lack of maintenance; Dark green, if the pool had high algal den-
sity indicative of a long-term lack of maintenance; and Blue, if
the pool was in normal condition. The breeding pools were al-
ways associated with the dark or light green conditions, while
nonbreeding pools were always blue. Inspectors recorded the
GPS location of the household and the date of the visit.

We began the analysis by matching the MAD survey entries
to specific pixels in the AVIRIS image. This was complicated
by the fact that the GPS records did not exactly correspond to
pool locations; instead, they typically fell on the housholds’
front driveways. We determined the precise pixel position of
each pool by inspecting high-resolution commercial satellite
imagery (Google, 2012; Nokia/DigitalGlobe, 2012). Almost all
pools were visually apparent both in the high-resolution satel-
lite images and the AVIRIS data. Occasionally a small, dark, or
shadowed pool was not obvious in the lower-resolution AVIRIS
image. In these cases we located the appropriate AVIRIS pixel
by referencing nearby landmark features. Our data set con-
sists of the first 25 pools from both breeding and nonbreed-
ing groups based on the incidental ordering of the Consolidated
MAD database.

It was necessary to skip some database entries to preserve
the quality of this sample. We ignored entries for pools that
could not be seen in the high-resolution images (6 pools). This
may have been caused by modifications between the time of the
survey and the unknown date of the satellite image. It is also
possible that some database entries referred to spas which were
under patio covers and therefore invisible. We also skipped
pools whenever neighboring landmarks were not clear enough
to identify the corresponding AVIRIS pixel (7 pools). Finally,
some pools visited very early had obviously dried out by the
time of the AVIRIS overflight so that only the bright bottom
was visible (4 pools). We continued to label valid pixels until
reaching the total number of 25 from each category. Most pools
were inspected within two weeks of the overflight and it is rea-
sonable to expect they did not change significantly during this
period.

2.2. Matched Filters for Pool Detection

We sought an automated procedure to transform an AVIRIS
reflectance cube into a map of colonized and clean pools. This
involves several distinct challenges. Finding pools requires sup-
pressing false positives from urban spectral clutter. Then, as-
sessing colonization potential requires an interpretable statis-
tical prediction. Consequently we formulated the problem as
two sequential steps of pool detection and pool characteriza-
tion. We used different methods for each objective and then
validated the two stages independently. The two steps appear in
the center and left panels of Figure 2.
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Figure 2: Left: A representative subframe of the AVIRIS image acquired in an overflight of Fresno, CA. The frame below shows a zoomed-in view of the red
rectangular area, with several pools in different conditions. Center: Detection result showing pool locations. All detections are accurate. Pixel intensity correlates
with the strength of the MF score. Right: We compute each pools’ probability of colonization using its chlorophyll-a signal. Red values correspond to a high
colonization probability. We removed spurious detections on the canal, since these would be easy to exclude using GIS data.

The detection step identifies pixels containing pools. Pre-
vious work in pool detection by Kim et al. (2011) uses high-
resolution imagery containing color and morphological infor-
mation. They use the Normalized Difference Water Index
(NDWI), a ratio of green and near-infrared channels, to flag
water pixels. In contrast, we used a full-spectrum detection
algorithm to analyze a wide spectral range. We excluded at-
mospheric absorption bands, analyzing all channels within the
intervals from 400—1206 nm, 1433—1732 nm, and 1957 -2500
nm. We used a matched filter, a classical strategy for subpixel
target detection in spectral data (Manolakis et al., 2001). A
linear mixing model treats the observed spectral reflectance in
d channels, x € R?, as convex linear combination of a back-
ground distribution with the target spectrum t € R?. It mod-
els the background as a multivariate Gaussian distribution with
mean p and covariance matrix ¥, ignoring independent additive
measurement noise (Stocker et al., 1990). It is most common to
estimate background means and covariances from the data. For

the set of observed reflectances X = {x;}7_,, we have:
1 1 T
p=g 2N W= D =) M
x;€X x;€X

For a target t combined with the background at a mixing frac-
tion ¢ € [0, 1], the measured reflectance is a perturbed normal
distribution (DiPietro et al., 2010):

x=(1-¢)N,P) + ¢t 2

The optimal matched filter is a projection that best separates the
distributions in which the target is present and absent - these
differ only by a constant factor, having equivalent covariance
statistics. The matched filter is defined as:

o = & -t - p) 3)
ORI SN ()

The matched filter score @; approximates the target mixing frac-
tion ¢;.

In practice the background is not perfectly Gaussian and nu-
merically extreme outliers may have large but purely incidental
projections . This is particularly true for urban environments
containing a diverse mixture of synthetic and highly reflective
materials. We adopted a false-alarm mitigation strategy first
proposed by DiPietro et al. (2010) to reject these outlier pix-
els. Here a second score, B;, estimates the likelihood of the
observed reflectance given the appropriate fractions of Gaus-
sian background and target. This indicates whether, after sub-
tracting the target fraction, the remainder of its mixed spectrum
is representative of the background. Under weak assumptions
(DiPietro et al., 2010), this equates to the Mahalanobis distance
with respect to the background covariance, 3;, measuring the
distance between the pixel under test and its expected value at
the predicted mixing fraction.

@) = ait+ (1 = au “
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Figure 3: Matched filter and outlier rejection scores @ and S, for each pixel in
the test subframe.

Bi = (x — (@)™ (x — ()" ®)

Large 8 values indicate outlier pixels. Figure 3 shows an exam-
ple of @ and B values for pixels the test subframe. Most pool
pixels were easily separable from the background distribution.

In order to make the detection decision one must combine
the @ and S scores into a scalar score. This combined score
is typically a linear combination of «; and ;, but the optimal
weighting depends on characteristics of the data. Here we set
the coefficients by injecting synthetic spectra of pools into an
urban scene at mixing ratios between 0 and 1, producing «
and S scores for both target and background pixels. We then
fit a linear discriminant which best separated the two popula-
tions, using a logistic regression mapping onto class labels 1
and O for the pool and non-pool classes, respectively (Bishop,
2006). Other linear discriminants are possible - for example,
Foy et al. (2009) use a Support Vector Machine. In practice, we
found performance was insensitive to the precise form of the
decision boundary and any reasonable combination improved
performance vis a vis matched filters that did not include the 8
score.

The matched filter algorithm required a representative spec-
tral library. We gathered these target spectra directly from pools
that were visible in urban AVIRIS scenes. For these tests we
formed a target vector t based on the mean spectrum of the
pools identified from the MAD survey database. The middle
panel of Figure 2 shows the result, with pixel brightness indi-
cating the strength of the match.

We then evaluated true and false detection rates by exhaus-
tively labeling all visible pools in a subframe of the AVIRIS
overflight. The MAD database was not suited for this purpose
because it did not include all pools in its geographic region.
Therefore it could not identify a false positive; spurious detec-
tions within its boundaries could simply have been unrecorded
pools. Fortunately even small pools were quite easy to see in
the high-resolution satellite remote sensing data (Google, 2012;
Nokia/DigitalGlobe, 2012), so we used this as a standard for

evaluation. We examined all houses appearing in a fixed ge-
ographic area of approximately 2.0 square kilometers outside
the ground survey area. This subframe was selected to contain
range of different commercial and residential areas (Figure 2).
We used high resolution satellite images to build a comprehen-
sive list of all pools in the test scene (137 in total). Next, we
marked one pixel of each pool and treat detection scores within
10 m (3 pixels) of the mark as successful. This radius was large
enough to capture the largest pools, and small enough that lo-
calization errors would not matter to a ground survey team. We
masked out a canal that transected the subframe, since large wa-
ter features would be easy to exclude with GIS data in a fully
automated system.

2.3. Pool Characterization

After the initial detection step we used reflectance spectra
to characterize the condition of each pool. Mosquito coloniza-
tion of unmaintained pools often coincides with accumulation
of spectrally distinctive algae and other organic material. Stud-
ies by Reisen et al. (2008) state that larval colonization is as-
sociated with lower concentrations of pool chemicals, which
also lead to algal blooms. We hypothesized that commonly
used spectral water quality indicators, such as measures of al-
gae, chlorophyll and suspended solids, might predict mosquito
colonization. Most previous water quality analyses involve con-
trolled laboratory environments (Han, 1997) or remote sensing
of large natural bodies of water (e.g. Kallio et al., 2001; Yacobi
et al., 1995; Dekker et al., 2002, and references therein). Res-
idential pools introduce additional complications, such as an
optical path that includes reflection from the pool bottom and
the presence of non-water materials in the AVIRIS pixel. How-
ever, pools are physically isolated from each other and permit
many independent trials in a small geographic area.

We first considered spectral signatures related to algae.
Algae-laden water contains several diagnostic spectral features
independent of the presence of other suspended solid material.
These features appear in studies based on laboratory measure-
ments (Han, 1997), in situ field measurements (Yacobi et al.,
1995), and remote sensing data (Dekker et al., 2002). Algae ex-
hibit low reflectance in the 400 — 500nm region. There are mul-
tiple reflectance peaks caused by local minima in pigment ab-
sorption - a strong peak between 550 and 580 nm, and another
at 650 nm (Dekker et al., 2002). There is a reflectance mini-
mum near 670 due to absorption by chlorophyll. Reflectances
then increases to a 700 nm NIR peak caused by an interaction of
cell scattering, pigment, and absorption. The chlorophyll-a con-
centration is a common primary inversion parameter for remote
sensing of phytoplankton pigments. It typically involves a ratio
of reflectances in the region from 670 — 720 nm (Kallio et al.,
2001). Other ratios are possible; Hoogenboom et al. (1998) es-
timate these concentrations with the ratio of bands at 715 nm
and 667 nm, capturing chlorophyll and pheaophytin pigment
features. We also considered spectral measures of Turbidity,
used here as a proxy for Total Suspended Solid matter (Kallio
et al., 2001). In general, suspended sediment has been shown
to cause an increase in reflectance across the 600-710nm range
(Han, 1997). In algae-laden water this feature remains strongest



at approximately 700 nm, and Kallio et al. (2001) measure tur-
bidity with the reflectance at 710 nm.

In this study a logistic regression model (Bishop, 2006) rep-
resented the relationship between one or more spectral parame-
ters and the presence of mosquito larvae. It estimated the proba-
bility Py that a pool harbored Culex larvae based on one or more
variables of interest. For independent variables v = {vy,...,v,}
and free parameters ® = {6, . ..6,} the model was:

1
=15 exp[—(6p + Ovi + ...+ 6,v)]

Q)

We report performance from models formed using each of
the aforementioned spectral attributes. We also fit a multivariate
model with a wide spectral range, using all channels between
400 nm and 2500 nm except the atmospheric H,O absorption
bands as before. We fit all model coefficients using standard
maximum likelihood methods detailed by Bishop (2006), with-
out regularization terms.

We evaluated performance by comparing breeding and non-
breeding classifications against the MAD reference. We esti-
mated classification accuracy rates using Leave One Out Cross
Validation (LOOCYV) (Dreiseitl & Ohno-Machado, 2002).
Specifically, we fit coefficients using all but one data point and
then applied the resulting model to classify the held out da-
tum. We repeated the procedure over the entire dataset and
computed the expected accuracy rate. This gave an unbiased
estimate of how a similar classifier trained on the entire dataset
would perform on new instances from the population (Kearns
& Ron, 1999).

3. Results

3.1. Pool Detection Results

We first evaluated matched filter detection by comparing per-
formance to the Normalized Difference Water Index (NDWI)
from McFeeters (1996) and Kim et al. (2011). Their work uses
green and near infrared bands of satellite data having higher
spatial resolution but lower spectral resolution. For an accurate
comparison we spectrally coarsened AVIRIS radiance values to
match the GeoEye bands (Red: 510-550nm, NIR: 800-910nm).
We also considered an NDWI score computed from the high
spectral resolution, atmospherically corrected reflectances (Ta-
ble 1).

Both the Matched Filter and NDWI produced scores for ev-
ery pixel. To detect discrete pools one must threshold this score
at a level which balances the number of true and false detec-
tions. Figure 4 represents this tradeoff with a Receiver Oper-
ating Characteristic (ROC) curve (Fawcett, 2004). Desirable
curves (near the upper left) have many true detections and few
false positives. We compare NDWTI detection strategies with
the matched filter approach, cautioning that our NDWTI statis-
tic does not include the additional morphological analysis of
Kim et al. (2011) due to the lower spatial resolution. The
matched filter performed better than the NDWI approach us-
ing GeoEye-equivalent and AVIRIS spectral resolutions. It de-
tected 122 of 137 pools without false alarms. A false detection
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Figure 4: Performance comparison for spectral detection methods based on
matched filtering and the Normalized Difference Water Index (NDWI).

rate of 107* revealed 131 real pools, providing 95% recall with
approximately 7 false alarms per square kilometer. This was
comparable to the accuracy reported by Kim et al. (2011) who
use a combination of color and morphological analysis. Pools
showed distinctive signatures combining high reflectivity in vis-
ible wavelengths with a 850nm water absorption feature. This
made them relatively simple to detect, and there was no single
predominant cause of errors. Rare synthetics like plastic roofing
materials occasionally caused false positives. There was occa-
sionally confusion inside dark shadows, a common challenge
for urban remote sensing (Lachérade et al., 2005; Dell’ Acqua
et al., 2005). Shadows could also prevent detection when over-
hanging trees or buildings obscured a real pool.

3.2. Pool Characterization Results

The spectra of breeding and nonbreeding groups separated
visually into distinct populations. Figure 5a shows the me-
dian spectrum from each group, with confidence bars indicat-
ing the middle quartiles. Figure 5b shows the first derivative
of the spectrum. The breeding pool data was consistent with
all algae chlorophyll signatures noted by Han (1997). A lower
slope in the 400-500nm range may indicate algal absorption. A
550nm green peak was present, though it also appeared (some-
what blue-shifted) in clean pools. A concavity in the breeding
pool spectra was consistent with a 670nm chlorophyll absorp-
tion feature. A relative peak at 700nm appeared in breeding
pools and may also be related to chlorophyll (Gitelson, 1992).
Finally, the breeding pools also exhibited a shallower slope in
the 500-600nm range.

We evaluated each of these spectral attributes for predict-
ing the breeding | nonbreeding distinction. Table 1 shows
leave-one-out model prediction accuracies and Kappa statistics
(Fielding & Bell, 1997) at the best-performing thresholds. Each
R, represents the mean reflectance value between wavelengths
a and b (Lunetta et al., 2009). Turbidity performed only slightly
better than random. The NDWTI index correlated somewhat with
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Figure 5: Spectra from pools surveyed by the Consolidated Mosquito Abatement District. 25 Pools from each class are represented. Error bars indicate the median
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Table 2: Performance of models formed by multiple spectral attributes, with
Kappa coeflicients and predictive accuracy for the breeding [ nonbreeding dis-
tinction. The model based on chlorophyll outperformed every combination ex-
cept for the full spectrum data.

CCombination Kappa Predictive accuracy
Turbidity only 0.11 59.0%
NDWI only 0.53 75.6%
NDWI, Turbidity 0.69 84.6%
Chlorophyll, NDWI 0.87 93.6%
Chlorophyll, Turbidity 0.87 93.6%
Chlorophyll, NDWI, Turbidity ~ 0.87 93.6%
Chlorophyll only 0.89 94.8 %
Full spectrum 0.92 96.2 %

Culex infestation, but the chlorophyll indices achieved better
performance. The ratio of 685 — 691 nm and 670 — 677 nm
bands noted in Kallio et al. (2001) had the best cross-validation
error.

Table 2 shows prediction accuracy for models formed from
combinations of multiple variables. The combinations used
the best-performing band ratios from Table 1. Notably, the
turbidity feature bolstered the predictive performance of the
NDWI, suggesting that these indicators may be complemen-
tary. However, chlorophyll signals alone achieved a far better
cross-validation error rate, outperforming any combination of
multiple variables with the sole exception of the full-spectrum
data that performed only slightly better. Figure 6 illustrates lo-
gistic regression models made from two different pairs of vari-
ables. The left and right panels show models formed by pairing
NDWI with chlorophyll and turbidity attributes. Each plot indi-
cates probability isocontours at the 5%, 50%, and 95% levels.
The populations separated most cleanly along the chlorophyll-a
feature.

The simplicity and physical interpretability of the
chlorophyll-a relationship recommends it for pool char-

acterization. With spectra expressed as fractional surface
reflectance, the top-performing logistic regression model using
chlorophyll was simply:

_ 1 for = Res5-691
© 7 T+ exp(—240 + 243.3¢)

= @)
Re70-677
This assumed an even balance of breeding and nonbreeding
pools, so widely unbalanced distributions would require appro-
priate weighting to preserve accurate probability estimates.

4. Discussion

This study demonstrates that airborne imaging spectroscopy
can assist WNV vector control. For the task of pool detection,
AVIRIS reflectance data provides performance comparable to
the GeoEye studies of Kim et al. (2011), without the high spa-
tial resolution of that instrument. The full spectrum detection
is valuable to find green pools having subtle water absorption
signatures. After detection, the spectral data is uniquely helpful
for characterizing pool condition. We find that remotely sensed
chlorophyll-a signatures predict mosquito colonization. A band
ratio related to chlorophyll-a approaches the predictive power
of a full-spectrum model, classifying colonized and clean pools
with over 94% accuracy for this dataset. Separating detection
and characterization allows both steps to be validated and re-
fined independently. For example, the detection could add mor-
phological or GIS cues, while characterization could incorpo-
rate seasonal priors on colonization probabilities.

In reality the observed spectrum is affected by the bottom re-
flectance as well as optical properties of the water (Kim et al.,
2010). Residential pools have a wide range of synthetic colors
and materials. Many pool bottoms appear green to the human
eye and can be mistaken for algae in visible images. Spectro-
scopic data overcomes this problem by revealing the unique
spectral signatures of algal pigmentation and scattering. Our



Table 1: Definition and predictive accuracy of spectral water quality variables.

Variable Value Kappa Predictive accuracy
NDWI (Rs55-565 — R800-900)/ (Rs55-565 + Rs00-900) 0.53 75.6% Kim et al. (2011)
Chlorophyll-a R704-713/R670-630 0.74 87.2% Hoogenboom et al. (1998)
R699_705 /R670—677 0.82 91.0% Kallio et al. (2001)
R685—691 /R67()_677 0.89 94.8% Kallio et al. (2001)
R6997714/R6617667 0.77 88.5% Kallio et al. (2001)
Re74/Re93 0.87 93.6% Lunetta et al. (2009)
R704—713/R675—685 0.82 91.0% Richardson (1996)
Turbidity R705-714 <0.0 55.1% Kallio et al. (2001)
Re99-705 <0.0 55.1% Kallio et al. (2001)
R705-714 — R747-755 0.11 59.0% Kallio et al. (2001)
R705-714/R747-755 0.09 56.4%
Full spectrum [R400 .. .R1206, R1433 . R1732, R1957 ce R2500] 0.92 96.2%
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Figure 6: Logistic regression models related spectral attributes to the presence of Culex larvae. Left: A model combining NDWI and chlorophyll attributes.
Chlorophyll showed the strongest predictive relationship of all the spectral ratios. Lines indicate probability isocontours at 5%, 50%, and 95% levels. Right: a
similar model using NDWTI and Turbidity attributes.



model uses this to directly estimate the probability of coloniza-
tion; it averages over pool bottom, surface and volume effects to
produce an expedient result that is readily interpretable by end
users. However, it is possible that the spectral data could also
estimate other physical attributes. For example, the semiana-
lytical treatment of Lee et al. (1999); Kim et al. (2010) models
optically deep water by expressing subsurface reflectance as a
function of optical properties such as absorption and diffuse
attenuation. One could add bottom reflectance and depth terms
to model shallow water such as pools. Such models could be
augmented with algal backscattering and absorption terms to
estimate physical chlorophyll concentrations. This would tie
Culex colonization to a physical quantity rather than a spectral
proxy, with the advantage that chlorophyll concentrations could
be measured in situ for direct validation. Predictions grounded
in these physical attributes could also be more consistent across
space and time. Unfortunately this approach requires pure ho-
mogeneous water pixels, which are not usually available for
small pools in our dataset. Future airborne instruments will
have far higher spatial resolution, resulting in one or more pure
water pixels that could be used to fit these physical models.

For now, we have presented a preliminary study showing sta-
tistical relationships based on spectral attributes. These are sta-
ble for this dataset and provide sufficient information to assess
and predict Culex colonization. Inevitably the limited tempo-
ral and spatial scope leaves some possibility for systematic bi-
ases. Seasonal factors like temperature, geography, and even
regional demography might influence the suitability of unmain-
tained pools as habitat. This makes further study at different
times and locales important. Future studies could also con-
trol for biases due to factors such as pool size. In this work
we observed that unmaintained breeding pools were typically
smaller than the nonbreeding pools. They more rarely filled
entire AVIRIS pixels, which might increase the level of sub-
pixel mixing with nearby materials. It would be surprising if
such effects alone explained the strong chlorophyll correlation
observed here. Nevertheless, it would be valuable to account
explicitly for pool size in future studies.

Overall this work provides an initial proof of concept that air-
borne imaging spectroscopy could be useful for mosquito con-
trol and public health agencies charged with controlling WNV.
Naturally, identifying green pools is only one aspect of a com-
prehensive vector control program. Other vector sources in-
clude small containers, drains and non-pool water features. On
larger scales, it is also possible that remote reflectance spec-
troscopy could help to identify and characterize other important
immature mosquito habitats, such as open wetlands, stormwa-
ter management structures, groundwater retention basins, or
flooded cropland.
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