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to distance, visibility constraints, and compet-
ing mission downlinks. Long missions and high-
resolution, multispectral imaging devices easily 
produce data exceeding the available bandwidth. As 
an example, the HiRISE camera aboard the Mars 
Reconnaissance Orbiter produces images of up to 
16.4 Gbits in data volume but downlink bandwidth 
is limited to 6 Mbits per second (Mbps).

To address this situation, the Jet Propulsion 
Laboratory has developed computationally ef! -
cient algorithms for analyzing science imagery on-
board spacecraft. These algorithms autonomously 
cluster the data into classes of similar imagery. 
This enables selective downlink of representatives 
of each class and a map classifying the imaged ter-
rain rather than the full data set, reducing down-
linked data volume. This article demonstrates 
the method on an Earth-based aerial image data 
set. We examine a range of approaches including 
k-means clustering using image features based on 
color, texture, temporal, and spatial arrangement 
and compare it to the manual clustering of a ! eld 
expert. In doing so, we demonstrate the poten-
tial for such summarization algorithms to enable 
effective exploratory science despite limited down-
link bandwidth.

Future Mission Challenges
Bandwidth issues are particularly poignant for fu-
ture missions to the outer planets. NASA’s Solar 

System Exploration Strategic Roadmap1 outlines 
the role of aerial vehicles in future explorations of 
the solar system, particularly missions to Venus 
or Saturn’s moon Titan. In the case of Titan, an 
aerobot would be capable of circumnavigating the 
moon within six months and remotely collecting 
sensed data some 8 km above ground level. The 
Cassini-Huygens mission has shown that Titan 
contains rich and varied landscapes (see Figure 1), 
including smooth and rough terrain, sand dunes, 
ethane lakes, shorelines, craters, and possibly cryo-
volcanoes. Additionally, there is a signi! cant 
cloud presence. With such Earth-like diversity, 
Titan is of great scienti! c interest.

Data yield for a Titan mission would likely be 
limited not by the rate of image acquisition, but 
rather by communications constraints. Commu-
nication with Earth incurs latencies exceeding 
two hours. Downlink bandwidth is expected to 
be 4,500 bits per second, or 130 Mbits per day 
assuming an 8 hour transmission window.2

Autonomous methods of classifying aerial im-
age data could preselect the most scienti! cally 
meaningful data for return to Earth. For example, 
spacecraft could transmit a representative sample 
of different image contents or prioritize speci! c 
features of interest. Previous work in onboard data 
understanding has already demonstrated selective 
data transmission on rover and satellite platforms. 
The Mars Exploration Rovers (MER) can auto-
matically recognize science targets such as dust 
devils or clouds.3 The Earth Observing-1 (EO-1) 
Satellite can detect hazardous events such as ! res, 
" oods, and volcanic activities and downlink perti-
nent data.4 In both cases, targets can be detected 

Many current and future NASA missions are 

capable of collecting enormous amounts of 

data, of which only a small portion can be trans-

mitted to Earth. Communications are limited due 
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without human direction, allowing 
for automatic data prioritization and 
improved science return.

Several challenges in" uence our 
design decisions for automatic image 
analysis. First, onboard processing 
is limited in space" ight applications. 
Avionics computers must satisfy strict 
radiation and energy constraints, 
and they share resources with con-
tinuous autonomous control and data 
processing. One modern radiation-
hardened processor used in space ap-
plications, the RAD750, is clocked at 
200 MHz, has 128 Mbytes of RAM, 
and can achieve 400 million instruc-
tions per seconds (MIPS). This is more 
than a decade behind current desk-
top processing capabilities, which are 
approaching 100,000 MIPS.

Another challenge is the diversity 
of surface features the aerobot might 
encounter. An aerobot would be in 
constant motion with limited con-
trol due to unpredictable atmospheric 
currents (which makes it challenging 
to revisit sites of interest). It will also 
be dif! cult to schedule image targets 
in advance or to anticipate features 
of interest. This favors an “unsuper-
vised” approach that makes few as-
sumptions about image content but 
instead discovers interesting and 
representative samples based on the 
data’s intrinsic properties. Scientists 
have proposed unsupervised meth-
ods for selective data return applica-
tions in the rover domain.5,6 Such ap-
proaches have also been widely used 
for image search and retrieval7 and 
image-sequence representation.8,9

Clustering, which classi! es a data set 
into discrete categories of items with 
similar properties, is one common 
unsupervised approach. Clustering 
has been applied to aerial imagery,10

although not in an online fashion.
At JPL, we are working on unsu-

pervised classi! cation for selective 
transmission of aerial image data in 

remote space exploration. We repre-
sent images in a metric space to com-
pare their similarities. We identify im-
age feature descriptors to encourage 
clusters based on semantic content 
such as presence of horizons, clouds, 
and water bodies. A broad survey of 
different image features suggests sev-
eral that are both computationally ef-
! cient for spacecraft computers and 
relevant to the image categories iden-
ti! ed by planetary scientists.

To test our approach, we con-
structed a data set of aerial imag-
ery using a consumer-grade digital 
camera (Canon PowerShot SD850 
IS) with 1,600  1,200 pixel resolu-
tion. A total of 162 images were col-
lected during a commercial airline 
" ight from New York to Los Angeles. 
The images primarily contain shots 
dominated by sky, horizon, or unde-
veloped land. Some contain clouds, 
discernable water bodies, developed 
land, or small portions of the plane’s 

wing or window at one or more edges. 
The data set has many attributes sim-
ilar to what we would expect from 
Titan aerial imagery, including var-
ied terrain, clouds, horizons, water 
bodies, and artifacts such as an occa-
sional window or wing obstruction.

Image Features
Humans describing natural images 
refer to abstract concepts such as ob-
jects and places rather than primitives 
such as intensity and texture. These 
high-level interpretations are dif! cult 
to automate; our challenge is to ! nd 
implementable methods to discrimi-
nate between different areas of sci-
ence interest (such as terrain types).

Image data may be described as a 
series of measurements that represent 
the scene in an n-dimensional feature 
space. For example, images could be 
completely described by the intensity 
of each pixel, but this places them in 
a feature space with a dimensionality 

Figure 1. Cassini-Huygens images showing the diversity of Saturn’s moon Titan. 
The top-row images are from the Huygens probe and show a fi eld containing frozen 
rocks with horizon, a hill etched by hydrocarbon rain, and part of a dried riverbed, 
respectively. The bottom-row images are from the Cassini mission radar data and 
show sand dunes and hydrocarbon liquid bodies. (Courtesy of ESA, NASA, JPL, and 
University of Arizona [top and middle left]; NASA, JPL, ESA, and the University 
of Arizona [top right]; NASA and JPL [bottom left], and NASA and the JPL Space 
Science Institute [bottom right].)
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equal to the number of pixels. A mod-
estly sized 1,024  1,024 grayscale 
image will thus be described in more 
than one million dimensions. Not 
only is this too large for convenient 
processing, but distances in this space 
might not re"ect image content. For 
instance, changing a scene’s illumi-
nation could shift the image’s feature 
vector radically while leaving con-
tent virtually unchanged. However, a 
more appropriate set of feature mea-
surements could permit meaningful 
automatic comparisons between im-
ages. Our goal is to !nd computation-
ally ef!cient features that effectively 
discriminate images with interesting 
content.

Basic color information can be 
gleaned from statistics on each im-
age’s intensity histograms. Multi-
spectral imagery contains n such his-
tograms. For imaging in the visible 
spectra, color can help distinguish 
basic terrain types such as vegetation 
from desert or clouds from sky. With-
out features to describe texture, such 
basic color features won’t be resilient 
to differing levels of illumination and 
could be tricked by similarly colored 

terrain (such as sky and ocean). Color 
might map to more distinguishing 
features such as surface temperature 
or height when using different imag-
ing techniques (including infrared or 
radar).

Terrain texture can range from 
smooth to coarse. It might be direc-
tional, as in the case of windswept 
sands, or periodic, as in the case of 
sand dunes. We can approximate 
texture coarseness and direction by 
taking statistics on the gradient of 
the image intensity function. Edge- 
detection algorithms such as the Sobel  
operator approximate this gradient 
(both magnitude and direction) by 
convolving the image with speci!c 
!lters. We can describe texture with 
statistics such as the density of high 
contrast changes (edges), mean gradi-
ent magnitude, and entropies of the 
magnitude or orientation responses. 
Coarse textures will have a higher 
edge density than smooth textures, 
as Figure 2 shows. Directional tex-
tures will have low entropy orienta-
tion responses.

We can also describe texture as a 
function of horizontal and vertical  

frequencies. The 2D Fourier transform 
accomplishes this by representing  
images as a series of sinusoids. Al-
though dif!cult to visually interpret 
for nonsynthetic images, the sinu-
soids’ magnitude can provide infor-
mation on structure and texture us-
ing low-level energy statistics.12 In 
particular, along with temporal fea-
tures, we have found the sums of en-
ergy in quadrants 1 and 2 (top right 
and top left) of the normalized mag-
nitude image to be effective.

Image-segmentation methods can 
!nd areas of interest that are each de-
scribed by a different set of features 
but are likely too expensive for space-
craft computers. Giving up rotational 
invariance, images can instead be 
split into n  n equal-sized subimages. 
All features can be collected in each 
subimage and appended to a single 
feature vector for each image. Our re-
sults suggest that this provides small 
improvements for feature combina-
tions that don’t collect data on an im-
age’s Fourier transform.

Finally, in an aerial imaging sce-
nario, we would expect image simi-
larity to correspond with temporal 
proximity. We can encode this feature 
as the acquisition order of an image.

Clustering
Clustering algorithms group data 
into disjoint sets based on similari-
ties in their feature vectors. One fast 
and common method, Lloyd’s algo-
rithm,13 begins by placing k addi-
tional data points, or centroids, in the 
feature space. Assigning each data 
point to the closest centroid forms 
clusters. An updated centroid is cal-
culated for each cluster and all data 
are again assigned to the closest cen-
troid. This process continues until 
cluster membership no longer changes 
signi!cantly. In practice, convergence 
is fast and we can stop the algorithm 
early for a less optimal solution.  

Figure 2. Edge detection (middle) finds areas of abrupt changes in intensity. 
The density of such edges, as visualized in a heat map (right), provide texture 
information. Water bodies (top) tend to be homogenous regions containing 
few edges compared to purely land-based imagery, such as this dust-devil-torn 
landscape (bottom) in the southern hemisphere of Mars taken by Themis (image ID 
V0782900311). The edge density of the top image is 0.02, and the edge density for 
the bottom is 50 percent greater at 0.03.
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The primary challenges with this al-
gorithm are in choosing the number 
of clusters and the centroids’ initial 
locations.

Once images are clustered in a met-
ric space, we can perform selective 
data return. Images closest to each 
cluster centroid serve as exemplars 
for that category. Downlinking the n 
closest images to each centroid pro-
vides a broad overview of the types of 
data collected. If some clusters prove 
to be consistently interesting, then 
all images from those clusters can be 
prioritized for downlink. Finally, sci-
entists can also opt to downlink im-
ages most dissimilar to the others— 
outliers or anomalies, which will be 
located far away from cluster cen-
troids. Thus, clustering enables se-
lective data return based on a repre-
sentative sample, a biased sample, or 
outliers. These options provide com-
pelling alternatives to conventional 
approaches such returning data col-
lected at periodic intervals.

Cluster Comparisons
Ideal clusterings contain compact 
clusters that are spread far apart 
from one another. However, satisfy-
ing these qualities provides no guar-
antee that a given clustering will sup-
port a particular science objective. In 
our work, we use empirical tests to 
compare algorithmic clusterings with 
manual clusterings performed by ex-
perts. This provides insight into the 
match between each arti!cial feature 
space and the physical scene features 
of interest to the expert.

To evaluate performance, we com-
pare the overlap between automatic 
feature-based clustering and time-
based clustering (based solely on acqui-
sition order) with the expert clustering. 
Automatic feature-based methods that 
outperform time-based clustering as 
measured by correspondence with ex-
perts are good candidates for selective 

data return. We used adjusted mutual 
information (AMI)14,15 to compare the 
similarity between two partitionings 
of a data set.

Expert Labeling
With the appropriate prompt, experts 
can manually cluster data to serve as 
a ground-truth standard for evalua-
tion. For the terrestrial data set, we 
elicited a manual clustering from a 
planetary volcanologist. We provided 
the expert with this written prompt:

Suppose that the following aerial images 
were taken of an environment for which 
we have little knowledge or data. Fur-
thermore, suppose that you might not 
be able to receive all images. Please sort 
these images into !ve groups in such a 
way that if you could only receive a small 
number of images from each group you 
could reasonably infer the content of the 
remaining images in that group.

We did not allow the expert to 
choose the number of clusters because 
this could create confusion about the 
clusters’ scope: a dozen clusters could 
incorporate rare classes like “solitary 
clouds” but a triumvirate classi!ca-
tion could only capture broad distinc-
tions like the presence of a horizon. 
Upon interview, the expert felt that 

!ve was a mostly adequate number; 
six would have been ideal so that an 
outlier group of “must return” im-
ages could have been established.  
Figure 3 displays examples from each 
expert cluster.

Experiments
Our planetary volcanologist chose to 
sort the aerial images by semantic dis-
tinctions: rivers, more clouds, land, 
horizon, and desert. Figure 3 shows 
representative images selected at ran-
dom from each. In terms of low-level 
features, images in the horizon cate-
gory contain a line separating the im-
age into two regions of color and tex-
ture. Above the line the sky contains 
nearly uniform texture and a gentle 
gradient change from light to dark 
blue, while below the line both tex-
ture and color vary signi!cantly. The 
land images largely contain patches of 
ground in shades of brown and green, 
while the desert images are domi-
nated with brown patches. Texture 
in all the images generally becomes 
smoother as the altitude increases. 
The clouds in the more clouds group 
contain patches different from neigh-
boring areas in color and texture. The 
river images appear to be the most 
dif!cult to describe in image primi-
tives. One observation is that the  

Figure 3. Expert cluster examples. Five randomly chosen images from each of five 
clusters created and named by a planetary volcanologist.
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rivers are meandering polylines of 
widely varying thickness and are typi-
cally of a different color and smoother 
texture than their surroundings.

Our tests suggest that automatic im-
age features can reproduce the expert 
clustering better than either random 
or acquisition-order-based grouping. 
A combination of two frequency-
space statistics along with acquisition 
order features performed best overall; 
we call these the FT features. Perfor-
mance was quanti!ed with the AMI 
score to measure the similarity be-
tween each automatic clustering and 
the target expert clustering. The FT 
feature set produced an improvement 
of 33 percent relative to periodic sam-
pling by this metric.

Figure 4 displays an FT features-
based clustering in two dimen-
sions with near-centroid and outlier  

images. Most striking is the separa-
tion between images containing ho-
rizon and clouds from those contain-
ing ground-based images. Cluster 
2 favors images with clouds while 
cluster 3 favors images with horizon. 
Both horizon and clouds are abun-
dant in the outlier images in cluster 
2. Both of these clusters contain im-
ages with signi!cantly lower energy 
in the power spectrum of their Fou-
rier transforms when compared to 
the rest of the images. This is likely 
due to the contribution of strong, 
lower-frequency signals from homog-
enously textured clouds and sky, and 
the weakly periodic nature of im-
ages speckled with clouds. No clear 
distinction exits between clusters 1, 
4, and 5 in terms of the expert cat-
egories, but the representative im-
ages in cluster 5 have highly detailed  

textures and are taken at a relatively 
low altitude.

The features we have described 
are relatively fast and simple to col-
lect. For the FT features, the most de-
manding operation is the n log n Fou-
rier transform.16 With a !xed number 
of iterations, clustering can be com-
pleted in linear time. Therefore, the 
total algorithmic complexity is sub-
polynomial in image size and linear 
in the number of images.

A lthough our aerial data was con-
structed from visible spectra, these 
techniques apply to all remote sensed 
imagery (such as radar). Because the 
features we used are general, they 
would likely perform well for sce-
narios other than aerial imagery such 
as land or underwater traversals.  

Figure 4. Example algorithmic clustering of a terrestrial data set using FT features. The gray lines link three representative 
images closest to each cluster centroid. The red lines indicate outliers.
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Future directions include testing on 
additional data sets, !nding domain-
speci!c features in support of speci!c 
science tasks, careful initialization 
for clustering,17 and automatic rejec-
tion of images marred by sensor arti-
facts or noise.
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