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ABSTRACT
We present a metric learning approach to improve the performance
of unsupervised hyperspectral image segmentation. Unsupervised
spatial segmentation can assist both user visualization and automatic
recognition of surface features. Spatially-continuous segments can
improve noise levels and localization of feature boundaries. How-
ever, existing segmentation approaches rely on generic measures of
spectral similarity. Here we learn domain-specific distance met-
rics based on training data, improving segment fidelity to seman-
tic categories of interest. Multiclass Linear Discriminant Analysis
produces a linear transform that optimally separates a labeled set
of training classes. This defines a distance metric that generalizes
to new scenes, enabling graph-based segmentations that emphasize
key spectral features. We describe tests on data from the Compact
Reconnaissance Imaging Spectrometer (CRISM) in which learned
metrics improve segment homogeneity with respect to mineralogi-
cal categories.
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1. HYPERSPECTRAL IMAGE SEGMENTATION

Unsupervised hyperspectral image segmentation can reveal spatial
trends that show the physical structure of the scene to an analyst.
They highlight borders and reveal areas of homogeneity and change.
Segmentations are independently helpful for object recognition, and
assist with automated production of symbolic maps. Additionally, a
good segmentation can dramatically reduce the number of effective
spectra in an image, enabling analyses that would otherwise be com-
putationally prohibitive. Specifically, using an oversegmentation of
the image instead of individual pixels can reduce noise and poten-
tially improve the results of statistical post-analysis [1].

Typical segmentation methods for hyperspectral imagery in-
clude the watershed transform [2], Markov Random Fields [3],
and the Felzenszwalb graph segmentation algorithm [4]. Generally
speaking, they cluster pixels based on spatial proximity and a mea-
sure of spectral similarity given as a distance metric or other pairwise
function. Existing hyperspectral segmentation approaches generally
use generic distance measures that treat all channels equally or
weight channels based on global statistical properties of the dataset.
Such metrics are often confused by noise, instrument artifacts, or
spectral variations that are irrelevant to semantic categories of inter-
est.

This work aims to improve automatic segmentations by learn-
ing a task-relevant measure of spectral distance from expert-labeled
training data. We employ a multiclass Linear Discriminant Analy-
sis (LDA) based approach to learn this measure. It produces seg-
mentations that are not only are more visually cohesive, but also
quantiatively more accurate in separating known materials into dis-
joint segments, in comparison to segmentations produced using the

Euclidean metric. We evaluate this technique by comparing a set
of expert-labeled mineral class maps to the segmentation maps pro-
duced by learned metrics, and provide a results on a case study fo-
cusing on several well-analyzed CRISM images [5]

2. METRIC LEARNING FOR HYPERSPECTRAL IMAGE
SEGMENTATION

Our segmentation strategy employs the Felzenszwalb algorithm for
its simplicity and computational efficiency [4]. The approach was
first developed for computer vision applications and recently applied
to hyperspectral data [1]. It represents the hyperspectral image as
an 8-connected grid of pixels initialized as independent segments.
Edges between nodes in the grid represent distances between neigh-
boring pixels according to some pairwise similarity function. The al-
gorithm iteratively joins neighboring pixels together into larger seg-
ments, and describes each segment by the minimum spanning tree
of edges that joins all pixels in the segment. For nodes vi and vj , we
define the maximum internal edge weight of a cluster S to be Int(S)
which is the largest edge weight in the segment’s minimum spanning
tree, MST(S).

Int(S) = max
vi,vj

d(vi, vj) ∀ vi ∈ S, vj ∈ S,

(vi, vj) ∈ MST(S) (1)

The distance between two neighboring segments Sa and Sb is given
by the smallest edge weight that joins them, i.e. the most similar
pixel pair on their border.

Dif(Sa, Sb) = min
vi,vj

d(vi, vj) ∀ vi ∈ Sa, vj ∈ Sb,

(vi, vj) ∈ E (2)

The merge criterion tests this cross-segment distance to see if it is
larger than the minimum of both internal weights, weighted by a
constant k and inversely proportional to a segment’s area |S|:

MInt(Sa, Sb) = min

�
Int(Sa) +

k
|Sa|

, Int(Sb) +
k

|Sb|

�
(3)

Finally, any small remaining regions below a minimum size thresh-
old are merged with their spectrally-closest neighbors. The resulting
segmentation is fast to compute and accomodates any desired mea-
sure of spectral distance. Previous studies have used spectral angle
distance and Euclidean (Euc) distance to compute the segmentation.
We attempt a superpixel segmentation in which the image is conser-
vatively oversegmented; that is, we accept that single surface fea-
tures may be split into multiple segments, but try to ensure that each
individual segment - or superpixel - has homogeneous mineralogy
[1].



In this work we augment the segmentation algorithm with a
task-specific Mahalanobis distance metric learned from training
data. The Mahalanobis distance between samples {xi,xj} ∈ Rd

is d(xi,xj) = (xi − xj)
TM(xi − xj), where M = ATA is a

d × d linear transformation matrix. We seek to learn the matrix A
which best separates a set of N samples belonging to C classes. Our
approach employs multiclass linear discriminant analysis (LDA) to
maximize the ratio of between-class vs. within-class separation S,
defined by the Rayleigh quotient

S =
αTΣbα
αTΣwα

(4)

where Σb and Σw are the between and within class scatter matrices,
respectively. By selecting the top C − 1 eigenvectors of Σw

−1Σb

to define the d × C − 1 transformation matrix A, we define a pro-
jection for d-dimensional spectra into a C−1 dimensional subspace
that captures the variability between features with respect to train-
ing data [6]. As the number of training samples is often less than
the dimensionality of the data – which causes the maximization of
Equation 4 to become ill-posed – we regularize Σw by a parameter
γLDA ∈ [0, 1] according to: Σw = (1 − γ)Σw + γIC , where IC is
the C × C identity matrix. We select γLDA via cross-validation.

For comparison, we also learn a Mahalanobis distance via the
technique proposed by Davis et al. in [7], Information Theoretic
Metric Learning (ITML). ITML calculates the matrix M by max-
imizing the relative entropy between a multivariate Gaussian pa-
rameterized by a set of training samples, and another multivariate
Gaussian belonging to a known, well-behaved Mahalanobis distance
function. This maximization is constrained such that similar classes
remain nearby one another and dissimilar classes remain far apart in
the space defined by the learned metric. The ITML algorithm takes
a parameter γITML which controls the tradeoff between satisfying the
similarity/dissimilarity constraints and maximizing the divergence
between the Gaussians. We learn the metric and select this parame-
ter via cross-validation, using the code provided by the authors [8].

3. EVALUATING SEGMENTATION RESULTS WITH
RESPECT TO CLASS KNOWLEDGE

Hyperspectral segmentation algorithms partition images into spec-
trally homogenous regions. However, the exact definition of homo-
geneity is dependant on the chosen similarity metric. By leveraging a
small set of labeled pixels with known mineralogical interpretations,
we learn a metric that suppresses uninformative spectral content. To
assess the quality of the segmentation with respect of known ma-
terial species, we compare superpixels produced using the selected
metric to a set of expert-labeled classes defined by a planetary ge-
ologist. The geologist identified the primary constituents in each of
image, along with the image pixels containing the purest examples
of each mineral, and defined class maps for each material using the
ENVI spectral angle mapper function [9]. A minor fraction of image
pixels contain ambiguous or mixed materials. We mark these pixels
as unclassified and exclude them from the following performance
evaluation.

We define two measures to quantify the degree which the result-
ing segments partition distinct mineralogical species. The first mea-
sure is the conditional entropy of the class map given the segmen-
tation map, H(class|segment). The conditional entropy H(X|Y )
quantifies the amount of remaining uncertainty for a random vari-
able X (in our case, the distribution of material classes), given the
value of another random variable Y is known (here, the partition-
ing produced by a segmentation algorithm). In the case of a perfect
segmentation of the classes, H(class|segment) will be zero, as the

segmentation perfectly reconstructs the class map. Thus, we prefer
smaller values of H(class|segment). Our second measure of seg-
mentation quality, the “impurity ratio,” is the ratio of “impure” vs.
“pure” segments with respect to the class map. A “pure” segment
consists of pixels belonging to a single class, whereas an “impure”
segment consists of pixels belonging to multiple classes. Because
the size of a segment can bias this score, we scale the impurity ratio
for each segment by its size in pixels. As with the H(class|segment)
measure, smaller impurity ratios are better.

We evaluate the quality of segmentations produced by each met-
ric learning algorithm by segmenting spatially contiguous halves of
each image. We sample 100 spectra from each class from the first
half of the image (subsequently referred to as the “train” image), and
use these points to train each metric learning algorithm. We then seg-
ment the train image and the remaining half of the image (the “test”
image) using the Euclidean distance as a baseline in addition to the
learned metrics. In order to objectively compare results between sev-
eral metrics, we must compare segmentations that produce a similar
number of superpixels. For a given distance metric, the internal bias
k (Equation 3) alters the size – and subsequently the quantity – of
the resulting superpixels. To acheive this balance, we segment each
image using a range of k values in [10−3, 101] and provide overall
statistics for each algorithm on that range. We chose this range be-
cause the number of superpixels produced by each metric followed
a similar trend for all of the images we studied. Also, we focus
on segmentations that produce 200-1250 superpixels, as segmenta-
tions with few superpixels tend to inadequately capture morpholog-
ical characteristics of our imagery, while segmentations with large
quantities of superpixels are more sensitive to noise and insignifi-
cant differences in spectra. Finally, we ignore superpixels consisting
of less than 50 pixels, as they tend to be unstable and noisy with
respect to the training classes.

4. CASE STUDY: CRISM IMAGERY

We examine three well-studied CRISM scenes: 3e12, 3fb9, and 863e
(omitting the frt0000 catalog prefix). We use the Brown CRISM
Analysis Toolkit [10] to perform radiometric correction and atmo-
spheric calibration, and remove noisy bands in the extreme short and
long wavelengths, leaving a total of 231 bands in the in the [1.06,
2.58] µm range for analysis. Figure 1 gives the mean spectra of
the most pure material samples for the classes within each image
we consider in this work. See [1] for further details regarding these
images and their constituent material classes.

Figures 2 and 3 give the H(class|segment) and purity scores, re-
spectively, vs. the number of segments produced by each metric.
LDA outperforms both the baseline Euclidean metric and ITML, oc-
casionally dramatically (e.g. on images 863e and 3fb9). The Eu-
clidean metric performs worst, which is not surprising since it is
more susceptible to noise that a learned metric can suppress. ITML
yields about the same performance as the Euclidean distance for train
images 3e12 and 3fb9, which is likely due to the fact that these im-
ages only contain two and three material classes, respectively. The
quantity of training samples is small for these two images, and ITML
inadequately determines which spectral bands are the most promi-
nent. However, ITML still exhibits improved generalization perfor-
mance on test data over the baseline Euclidean distance, indicating
that some noise characteristics are potentially captured. This is re-
flected in the summary statistics per-image for each segmentation
metric given in Table 1, as well.

Figure 4 shows a set of resulting segmentation maps for which
the Euclidean metric, and LDA/ITML-learned metrics produced a
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Fig. 2. H(class|segment) values for Euclidean (green markers), LDA
(yellow markers) and ITML (magenta markers) based segmentations
vs. number of segments on train image (left) and testing image (right).
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Fig. 3. Impure/Pure ratio values for Euclidean (green markers), LDA
(yellow markers) and ITML (magenta markers) based segmentations
vs. number of segments on train image (left) and testing image (right).

Euc LDA ITML
863e H(class|segment) 0.0473 / 0.00403 0.0184 / 0.000584 0.031 / 0.00228

Purity 0.0684 / 0.032 0.0398 / 0.0124 0.0611 / 0.0266
3e12 H(class|segment) 0.0169 / 0.0676 0.0148 / 0.0588 0.0191 / 0.0655

Purity 0.018 / 0.0619 0.0116 / 0.0573 0.02 / 0.0596
3fb9 H(class|segment) 0.0884 / 0.378 0.0497 / 0.242 0.0972 / 0.354

Purity 0.0661 / 0.296 0.0368 / 0.195 0.0745 / 0.294

Table 1. Average H(class|segment) and Purity Statistics Per-Image. Green and red fonts indicate the best and worst performing metric,
respectively

FeMg Smectite

Fig. 1. Mean spectra of samples from most pure material classes in
images 3e12, 3fb9 and 863e. The “neutral” class in image 863e is a
mostly featureless, dark material which is spectrally dissimilar from
each of the other material species.

comparable number of segments. Visually, the LDA-based segmen-
tation produces segments that better match the underlying morphol-
ogy of the image data. The Euclidean-based segmentation, and to
a lesser degree, the ITML-based segmentation, both suffer signifi-
cantly from column striping artifacts.

Table 2 gives the percentages of pure segments for each material
species for the three segmentation metrics. Both learned metrics out-
perform the baseline, with LDA improving over the Euclidean metric
for material classes FeMg Smectite, Montmorillonite and Nontron-
ite. ITML gives comparable performance to LDA for most materi-
als, but the gains are not as significant for the Montmorillionite and
Nontronite classes.

5. DISCUSSION AND FUTURE WORK

The superior performance of LDA over ITML is somewhat surpris-
ing, considering the simplicity of the LDA projection in comparison
to the expectedly more robust optimization performed by ITML. An
issue with ITML (as observed by Parameswaran et al. in [11]) is that
the (global) metric is not optimized locally, which can cause prob-
lems with overfitting to multi-modal data distributions. Conversely,
(regularized) LDA does not suffer from such overfitting issues. Al-
ternative regularization schemes may improve ITMLs generalization
capabilities.
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Fig. 4. False-colored composite image of image 863e (left), and the segmentation maps produced using Euclidean distance (left), LDA
(center), and ITML (right). We overlay each segmentation map on a single color-scaled band from image 863e (wavelength 1.25µm) illustrate
image morphology. The LDA-based segmentation is less susceptible to column striping artifacts, and better characterizes image morphology.

Class (# pixels) Euc LDA ITML
FeMg Smectite (9628) 26 49 48
Kaolinite (88642) 98 99 99
Montmorillonite (2029) 11 31 17
Nontronite (1836) 37 52 40
Neutral Region (112415) 97 99 98
Average 53 66 60

Table 2. Pure pixels / segment for Euclidean, LDA and ITML-based
segmentations shown in Figure 4. Best and worst average per-class
accuracy given in green and red font, respectively.

One avenue which we are currently exploring is the potential
for learning class structure across multiple, related images. We have
developed an technique, Multi-Domain/Multi-Class LDA (MDMC-
LDA) and a corresponding regularization scheme which asllows
LDA to exploit class structure local to an individual image while si-
multaneously capturing class relationships common to other images
with related classes [12].
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