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ABSTRACT

We present a new approach for site survey by autonomous
surface robots. In our method the agent constructs an in-
telligent map, a multi-scale model of the explored envi-
ronment incorporating in situ and remote sensing data.
The agent learns the model’s parameters on the fly and
exploits its predictions to guide adaptive navigation and
sampling. In this manner the agent can respond appropri-
ately to novel correlations, resource constraints and ex-
ecution errors. Rover tests at Amboy Crater, California
demonstrate improved performance over non-adaptive
strategies for a geologic survey task.

1. INTRODUCTION

Teleoperation of planetary exploration robots is often in-
feasible due to the infrequency and low bandwidth of
communications with the remote agent. Under these cir-
cumstances onboard analysis can improve the quality of
returned science data. Autonomous agents can explore
continuously, identify informative features for measure-
ment, and select the best data products to transmit [1].
Onboard science autonomy has enabled new operational
modes like selective data return by the EO-1 spacecraft
[2] and automatic dust devil detection by the Mars Explo-
ration Rovers [3]. This previous work generally involves
data analysis that detects one or more specific predefined
features of interest.

Here we consider a new application for onboard data un-
derstanding: a site survey task in which an agent char-
acterizes a large area using a small number of samples.
The agent must allocate observations intelligently to re-
duce redundancy and make best use of limited time and
energy resources. Because agent’s goal is to character-
ize the whole site, the value of each new observation
hinges on previous knowledge gleaned from other mea-
surements. In other words, the site survey application
requires a context-sensitive formulation of data’s science
value. Agents must respect correlations in data between
samples at different surface locations or between surface

Figure 1. The rover Zoë at Amboy Crater approaching a
boundary between basalt and sediment surface units.

and remote sensing data.

Here we treat site survey as an experimental design task,
selecting observations that provide the most information
about a spatial model of the environment. A Gaussian
process model represents correlations between remote
sensing and in situ measurements. This intelligent map
improves exploration in several respects. The map itself
is a useful data product; it is a compressed description
of the traverse. Moreover, model predictions facilitate
context-sensitive sampling and navigation decisions. Pre-
diction uncertainty determines the information value of
candidate observations. The agent learns model parame-
ters during exploration so that these science value assess-
ments adapt to reflect unanticipated trends and correla-
tions.

This work applies the intelligent map approach to a sur-
ficial site survey. Here a rover travels within a prede-
fined “exploration corridor” toward an end-of-day goal
location while constructing maps of surface features (Fig-
ure 2). We describe mechanisms for model learning and
inference, and show how prediction uncertainty can in-
form adaptive sampling. Finally we describe tests at Am-
boy Crater, California that demonstrate kilometer-scale
exploration. Here a rover builds surficial maps by learn-
ing and exploiting correlations between in situ reflectance
spectroscopy and remote sensing data (Figure 3).



Figure 2. Overflight imagery of the field site. Annotations
show the rover status during an autonomous traverse.
Colored dots show spectral samples collected along the
rover path. The blue line indicates one isocontour of
the marginal prediction entropy, whose significance is ex-
plained in Section 3. The red line shows waypoints in the
current navigation plan.

Figure 3. Geologic map of surface material generated by
the rover from the traverse of Figure 2. Gaussian process
inference extrapolates from sparse samples by leverag-
ing remote sensing and proximity correlations. The rover
targets areas for which predictions are most uncertain.

2. GAUSSIAN PROCESS MODELS

Briefly, a Gaussian process [4] is a nonparametric
Bayesian scheme for modelling a regression of inde-
pendent variables X = {x1, x2, . . . xn}, xi ∈ IRd

onto scalar dependent observations Y =
{y1, y2, . . . , yn}, yi ∈ IR. In our site survey do-
main xi is a vector of sample site attributes including
spatial location and any associated remote sensing data.
For each site xi we transform the latitude and longitude
position (li0, li1) along with m remote image channels
(ci0, . . . , cim) to a common scale, and append them to
produce the attribute vector:

xi = (li0, li1, ri0, . . . , rim) (1)

This is the input to an unknown function f mapping site
attributes onto an observation yi with additive Gaussian
noise: yi = f(xi) + ǫ. For our site survey task the ob-
servation y is a single scalar value describing the surface
material observed at a sample site. The Gaussian pro-
cess model gives a distribution over underlying functions
f such that its evaluation at any set of potential sample
sites has a multivariate Gaussian distribution. Evaluating

marginal maximum a posteriori estimates f̂(x) at many
unobserved locations yields a surficial map of the desired
extent and resolution (Figure 3).

2.1. Stationary Covariance Functions

The covariance function κ(xi, xj) determines a prior over
f in terms of correlations between input points xi and
xj . Suppose the explorer agent collects observations at

sample sites X = {x1, . . . , xn} with noise variance s2.
This yields a positive definite covariance matrix C with
additive noise on the diagonal:

Ci,j = κ(xi, xj) + s
2
δ(xi, xj) (2)

These measurements induce a posterior distribution over
a future observation at xn+1. Define q = κ(X, xn+1) to
be a vector consisting of the covariance function evalu-
ated between each training point and the new sample site.
The posterior mean µ̂ and variance σ̂2 of the new obser-
vation is given by the following expression [4] involving
the vector of training outputs Y :

f̂(xn+1) = µ̂ = qT C−1Y and σ̂2 = qT C−1k (3)

In this work we use a popular squared exponential covari-
ance function with hyperparameters θ1, θ2, and a band-
width wk for each input dimension k = 1, . . . , d:

κ(xi, xj) = θ1 + exp{−θ2

d∑

k=1

wk(xik − xjk)2} (4)

Bandwidth hyperparameters reflect smoothing along
each dimension of the input data. In other words, they de-
scribe the correlation between two measurements based
on their location and remote sensing attributes. If the



geologic class of surface material is strongly correlated
with a particular remote sensing channel, a good explo-
ration policy would visit sites that are diverse with respect
to that remote sensing band. Alternatively, if spatial lo-
cation is a good predictor of geologic content then the
appropriate exploration policy evenly covers the physical
space. Different bandwidth parameters might place the
optimal policy between these extremes.

Appropriate hyperparameters are difficult to specify in
advance so it is desirable to learn them on the fly during
exploration. Convention favors two alternative estima-
tion approaches: Markov Chain Monte Carlo, or gradient
descent of the hyperparameter likelihood. The latter is
susceptible to local minima, but these were rare in our ap-
plication so we opted for the speed of conjugate gradient
descent. The data likelihood L(w, k) for our covariance
function has the following general form [4]:

L(w, k) = − 1

2
log det C − 1

2
Y T C−1Y − n

2
log 2π (5)

We reparameterize the likelihood so that the it respects
known isotropies in the input dimensions. For example,
bandwidth parameters associated with the two spatial di-
mensions should be equivalent. After finding the hyper-
parameter gradient we use the Fletcher-Reeves formula to
identify conjugate gradient directions. We perform a line
search to maximize L(w, k) and recompute the conju-
gate gradient from the new hyperparameter values. This
method converges in a several iterations. We avoid local
maxima by restarting the optimization at random loca-
tions in the hyperparameter space.

2.2. Nonstationary Covariance Functions

The covariance function of equation 4 is stationary; two
observations’ covariance depends only on their relative
locations in the input space. This is a poor model for sur-
ficial geologic units which often include homogeneous
areas and discrete boundaries. Figure 1 shows typical ter-
rain from the field expedition which exhibits a sharp dis-
continuity between regions of sediment and basaltic lava.
These contacts are better described by nonstationary co-
variance where the rate of smoothing varies over the input
space [5].

Our experiments model nonstationary covariance with
the method of Pfingsten et. al [6]. The approach aug-
ments the input space with the prediction of a stationary
regression model. The new input space separates train-
ing data with different output values along the additional
dimension so that their covariance is nonstationary with
respect to the original input. In our implementation the
latent regression model is also a Gaussian process. We
train the latent model on collected data to produce an ini-

tial prediction estimate f̂(x) for each datapoint. We then
scale this prediction to the [0, 1] interval and append it
back to the input space. This procedure transforms the
original independent variable xi to yield a new x′

i. The
attribute vector of a sample site becomes:

x
′

i = (l0i , l
1
i , r

0
i , . . . , r

m
i , 1 + exp{f̂(xi)}

−1) (6)

We then perform a second round of inference using a
Gaussian Process model trained on the transformed input
vectors x′

i. This augmented model has an additional free
bandwidth parameter to reflect its extra input dimension.

Figure 4 shows the impact of this transform on synthetic
data from a noisy step function. A stationary covariance
function forces hyperparameters to compromise between
estimating smooth and discontinuous regions. The re-
sulting model undersmoothes at the periphery and over-
smoothes at the discontinuity (Figure 4 left). The Gaus-
sian process with augmented inputs produces a superior
estimate (Figure 4 right). Note that the stationary covari-
ance function’s prediction variance is high near the pe-
riphery where the data is sparse. This contrasts with the
nonstationary case where prediction uncertainty is high
near the step discontinuity. The nonstationary prediction
variance reflects uncertainty about observations near the
area of high change. Discrete transitions lead naturally
to a “boundary following” policy in which the explorer
attempts to localize unit borders. Alternatively, more
graded unit transitions favor a strategy with greater spa-
tial coverage.

3. BAYESIAN EXPERIMENTAL DESIGN

The explorer agent can leverage Gaussian process pre-
dictions to improve its exploration plan. We employ a
Bayesian experimental design strategy in which the agent
selects measurements that minimize posterior uncertainty
about the explored environment. For our specific site sur-
vey application the values of interest consist of the re-
gression function f(x) at a hypothetical set of unmea-
sured locations. The agent chooses observations in order
to reduce the uncertainty over these sample locations as
quantified by their Shannon entropy.

Shewry and Wynn provide assumptions under which this
spatial design problem reduces to one of maximizing the
entropy of the agent’s observations [7]. They require that
the underlying process be finite and observations have
uniform noise which is independent of the sampling strat-
egy. For any set of potential measurement points Q the
entropy H(Q) is a fixed constant. If we aim to choose
an observation subset A to reduce posterior entropy over
unobserved sites Q \ A, the objective decomposes:

E[H(Q \ A | A)] = H(Q) − H(A) (7)

This leads to the strategy of maximum entropy sam-
pling [7, 8, 9]. Since H(Q) is a fixed property of the
environment, optimal data collection maximizes the en-
tropy H(A) of the observations. Maximum entropy sam-
pling reflects an intuitive idea that one should collect data
where the result is most uncertain. The approach has a
long history of use in geostatistics and Gaussian process
models, but it is worth noting that studies have presented
alternative measures of information gain such as the mu-
tual information criterion of Guestrin et al. [10]. In our
task we found that maximum entropy sampling provided
reasonable performance and computational efficiency.



0.0 0.2 0.4 0.6 0.8 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

stationary GP

stationary GP variance

 (not to scale)

0.0 0.2 0.4 0.6 0.8 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

augmented GP

augmented GP variance

 (not to scale)

Figure 4. Stationary Gaussian Process regression oversmoothes at a step discontinuity (left). Prediction variance depends
only on proximity to training data. Augmented inputs produce nonstationary data-dependent covariance structure (right).

Exploration rovers performing site survey tasks must
characterize large explored environments using only a
few samples. They can benefit from adapting their exper-
imental design during execution. This compensates for
inaccurate initial estimates of covariance function hyper-
parameters. Moreover, adaptive designs can exploit re-
source surpluses or recover from shortages whenever ex-
ecution errors modify the original plan. At regular inter-
vals our agent reestimates the covariance function using
all collected data and creates a new maximum entropy ob-
servation plan for the remaining resource budget. This is
Bayesian adaptive exploration [11], which has resurfaced
in such varied fields as robotic exploration and mapping
[12, 13, 14], active learning [15], and more broadly in
classical experimental design [16, 17].

3.1. The Corridor Exploration Task

We formulate adaptive resource allocation as an opti-
mization over sequences of navigation and data collection
actions. The most general solution would consider the
potential of future observations to change the Gaussian
process model itself. This is tantamount to a Partially-
Observable Markov Decision Process (POMDP). The
general POMDP exploration task is intractable, but re-
cent work with off-line optimization has made progress
using approximate solutions and cleverly-factorized state
spaces [18, 19]. However, even if we assume the model
is correct, identifying a maximum-entropy subset of sam-
pling locations is NP-hard [9]. Branch-and-bound ap-
proximations exist for sample locations on a connected
graph [9, 20], but real-time optimization of arbitrary data
collection and navigation action sequences remains im-
practical for continuous rover exploration domains.

Here we consider a constrained “corridor exploration”
task in which the agent moves forward inside a prede-
fined exploration area toward a specific end-of-day lo-
cation. The agent builds a surficial map based on sam-
ples collected at regular intervals along the traverse path.
Figure 5 illustrates the scenario: a rover travels the path

which maximizes observation entropy while respecting
the available time budget.

This corridor exploration task simplifies the general prob-
lem in several useful ways. First, the agent incurs no
explicit time or resource cost for data collection. This
is consistent with observations like images or reflectance
spectra that are relatively easy to collect. The simplifi-
cation also applies whenever data collection occurs au-
tomatically at a fixed rate. Incorporating data collection
cost into movement cost reduces the joint optimization
problem to one of path planning.

Corridor exploration also restricts the form of the util-
ity function. General utility functions may have mul-
tiple terms balancing expected information gain against
the cost of time and other resources [14]. Here our only
significant resource is time — for a set of drive actions
D the time cost C(D) is proportional to the total path
length. With some abuse of notation we write the joint
entropy of observations along this path as H(D). In gen-
eral the designer could assign weighting coefficients to
both terms and adjusts them through trial and error in or-
der to achieve desired behavior.

In the corridor exploration task movement cost is implicit
in the requirement that the robot be able to reach the end-
of-day goal location. This is a discontinuous utility func-
tion: cost is zero until the budget is exhausted, at which
point it becomes infinite. The path planning algorithm
need only explore the space of paths capable of reaching
the end-of-day goal. For a time budget B the objective
becomes:

max
D

H(D) S.T. C(D) ≤ B (8)

This conservatively subordinates the mapping task to
navigation goals. It permits a modular integration of
corridor exploration into mixed mission plans contain-
ing prescripted sampling and navigation waypoints. De-
spite some limitations, corridor exploration is well-suited
as a representative test case for autonomous site survey.
It involves significant resource constraints yet remains
tractable for real-time implementations.



Figure 5. The corridor exploration problem.

3.2. Adaptive Path Selection

Our corridor exploration solution splits the plan into a
near-term discretionary portion Da and a fixed remain-
der Db that drives to the goal. The rover begins with the
exploration budget allocated evenly among Db; as it ad-
vances it reallocates an appropriate portion of this budget
to the time pool available for discretionary planning.

A local planner allocates the near-term discretionary bud-
get C(Da) by considering several lateral offsets for each
forward position along the corridor (Figure 5 right). We
search the space of lateral offsets using a recursive greedy
path planning algorithm first formulated by Chekuri and
Pal [21] and elaborated by Singh et al. [20]. The al-
gorithm selects a midpoint that breaks the path planning
problem into two smaller segments and evaluates poten-
tial assignment ratios of the remaining resource budget
among the halves. For each candidate resource allocation
split we recursively call the same routine to identify the
best subpath. We evaluate plans by simulating periodic
observations along the path and computing their joint en-
tropy with the Gaussian process model. Candidate paths
must not exceed the budget allocation for their segment;
if there is no valid option the planner defaults to an infi-
nite cost path driving directly to that segment’s endpoint.

The short planning horizon permits fast real-time replan-
ning; for a modern single-core laptop processor run-
ning unoptimized code the entire replanning procedure
requires fewer than 30 seconds. In the physical experi-
ments the rover replanned its path at 3 minute intervals,
evaluating paths that each simulated on the order of 50
future observations. Note that the algorithm is myopic;
it ignores POMDP aspects of the problem and presumes
that model parameters are correct at each timestep.

4. FIELD EXPERIMENTS

Amboy Crater is a basaltic lava flow in the Mojave Desert
of California. It is 70km2 in area and consists of vesic-
ular pahoehoe lavas deposited over several distinct vol-
canic events (Figure 1). It is especially interesting to
planetary geologists because the flows may be analogous
to surfaces on the Moon and Mars [22]. Experiments at

Amboy Crater demonstrate our corridor exploration al-
gorithm in kilometer-scale site survey operations. Tri-
als consider the Eastern edge of the Amboy lava flow
where eroded basalt flows contact a sediment-covered
playa. The two distinct types of surface material — sedi-
ment and basalt — correspond roughly to patches of light
and dark albedo visible in the overflight image of Figure
2. We performed several trials in which the rover au-
tonomously maps these surficial units.

4.1. Navigation

Zoë (Figure 1) is a field robot developed at Carnegie Mel-
lon University to test mission scenarios involving long-
range navigation [23]. It is 2 meters in length and can
travel up to 1 meter per second under solar power. A
dual passive axle design allows steering by driving the
wheels at different velocities to produce variable-radius
drive arcs while at the same time accommodating obsta-
cles up to a 20 centimeters in height.

Mast-mounted navigation cameras provide stereo vision
for obstacle avoidance and terrain evaluation based on lo-
cal slope and roughness. Onboard navigation software
uses these terrain evaluations along with a D* path plan-
ning algorithm [24] to identify optimal paths between
prespecified waypoints. Our software architecture treats
terrain-based navigation separately from science-driven
path planning. Autonomous science software gives each
path segment in the form of a single end waypoint, and
the terrain-based navigation algorithm attempts to reach
a goal area within 5 meters of this location. This does not
guarantee the rover will follow the exact path anticipated
by the science planner; the rover occasionally detours to
avoid large bushes appearing throughout the corridor.

Zoë’s localization strategy emulates planetary explo-
ration scenarios. We initialize rover position through dif-
ferential GPS to simulate manual landmark-based tech-
niques for finding accurate start-of-day positions. Dur-
ing the traverse the rover updates its position estimate
with dead reckoning. Planetary rovers can derive absolute
heading data from celestial and solar navigation systems
utilizing ephemeris calculations; we simulate this capa-
bility using periodic heading corrections with an onboard
magnetic compass. Some localization error persists due
to wheel slip; depending on the terrain this error ranges
from 0 to 5% of distance traveled.

4.2. Spectrum Collection and Interpretation

In the Amboy experiments Zoë’s onboard science pack-
age consists of a Visible Near-Infrared (VIS/NIR) re-
flectance spectrometer that can collect data from distant
solar-illuminated targets. The spectrometer’s objective
lens, or foreoptic, is mounted to a pan-tilt servo unit fixed
to the rover mast. A calibration target mounted to the
deck provides a white reference to determine targets’ ab-
solute reflectivities despite lighting changes. The rover



Figure 6. Extreme and mean observations from the tra-
verse of Figure 3 with associated images and spectra. We
exclude noisy H2O absorption bands near 1350, 1850,
and 2350nm.

recalibrates against the white reference every 7 minutes
using a scripted sequence described in a companion pa-
per of these proceedings [25]. During normal operation
the reflectance spectrometer aims at a fixed −30◦ angle of
declination at the ground directly in front of the rover. At
this range its field of view projects to an ellipse measuring
approximately 14 and 6 centimeters along the long and
short axes. We acquire spectra at 7 second intervals dur-
ing forward motion, resulting in periodic measurements
of surface material from the rover path.

The spectra each contain over 2000 bands, but since they
describe a mixture of two physical materials (basalt and
sediment) their intrinsic dimensionality is low. A single-
output Gaussian process — which only predicts scalar
observations — can still model these spectra effectively.
Reflectance spectra of macroscopic mixtures are gener-
ally linear combinations [26], and linear dimensionality
reduction recovers the principal distinction. We compute
averages over 4 bandwidth windows to yield a single fea-
ture vector, which is rescaled and further reduced to a
single dimension using Principal Component Analysis.
The end result is the desired scalar observation: the ba-
sis derived from a linear projection that permits the best
possible reconstruction of collected spectra. This method
does not require labeled samples or other a priori knowl-
edge about the spectra the robot will encounter. Figure 6
shows mean and extreme observations from the original
example traverse along with context imagery.

4.3. Remote Sensing

In addition to the in situ spectroscopy Zoë utilizes remote
sensing data from one of two sources. The ASTER in-
strument provides georeferenced VIS/NIR data, yielding
15m per pixel resolution and registration accuracy on the
order of 1 pixel. To compensate for registration errors

we apply a Gaussian blur with a 1 pixel standard de-
viation. This low-pass filter preserves coarse informa-
tion while excluding fine boundary detail that is likely to
be inaccurate due to localization error. The ASTER im-
ages provide three VIS/NIR channels. Our experiments
also investigate a remote sensing data product based on a
USGS Digital Orthophoto Quadrangle (DOQ), a single-
channel overflight image data product in the visible spec-
trum [27]. The resolution of DOQ data is 1 meter per
pixel, making it analogous to high-resolution instruments
such as the HiRISE camera [28]. Registration accuracy is
negligible, but we apply the same Gaussian blur strategy
in order to compensate for localization drift.

4.4. Procedure

The Amboy field expedition visited three different locales
with over 100 traverses ranging from 100m to 1km. Here
we focus on a single 300 meter-long exploration corri-
dor. Figure 2 shows DOQ overflight imagery of the tra-
verse area together with a rover plan produced after 27
spectral samples (colored dots). The path planning algo-
rithm chooses a strategy that covers the principal units
of surface material within the corridor while respecting
the time budget. The blue line indicates one isocontour
of the marginal prediction entropy; in this case entropy
of the black basalt is high because no sample from this
patch has been collected. The entire suite of tests com-
pared several mapping techniques:

• Adaptive DOQ: An exploration scheme utilizing
the 1m/pixel overflight data in one visible band.
We derive class labels for individual map pixels
by transforming the final Gaussian process predic-
tions into two classes using k-means quantization
(k = 2).

• Adaptive ASTER: A method using three-band
ASTER VIS/NIR orbital data with 15m/pixel reso-
lution. K-means produces final pixel labels.

• Fixed Transect: An exploration scheme consisting
of a straight drive across the exploration corridor. K-
means produces final pixel labels.

• Fixed Coverage: An exploration scheme consisting
of a zig-zag coverage pattern to uniformly cover the
exploration corridor, subject to time constraints. K-
means produces pixel labels.

• Synthetic Random: A map that does not corre-
spond to any physical traverse; here both pixel class
labels are chosen with equal probability.

• Synthetic Uniform: Another synthetic map, filled
with pixel labels corresponding to the predominant
class.

Time budgets were 24 minutes for each physical explo-
ration method except the trials with DOQ overflight data.



Method Accuracy (std) Features (std) p-value (n)

Adaptive

DOQ 0.87 (0.01) 199.3 (45.3) <0.01 (3)
ASTER 0.81 (0.03) 225.0 (32.8) <0.05 (4)

Fixed

Coverage 0.75 (0.05) 206.0 (14.4) n/a (4)
Transect 0.74 (0.09) 75.9 (15.0) 0.45 (7)

Synthetic

Uniform 0.57 (< 0.01) n/a <0.01 (5)
Random 0.50 (< 0.01) n/a <0.01 (5)

Table 1. Results of the Amboy Crater Traverses: map re-
construction accuracy, the average number of features,
and the p-value of a one-tailed T-test against the meth-
ods’ equivalence to a fixed coverage pattern.

Two of these DOQ trials used a budget of 30 minutes, and
a third (the example appearing in Figures 2 and 3) was
handicapped with a budget of only 16 minutes. The ex-
pedition ended before we could perform time-equivalent
DOQ tests, so we encourage caution in interpreting the
statistical significance of the DOQ result.

The accuracy score measures the fidelity of a recon-
structed map based on the samples collected by each
method. We evaluate each dataset by retraining a Gaus-
sian process model using the high resolution remote sens-
ing image. We associate these pixel-wise classifications
with their most numerous matches in a hand-labeled copy
of the orbital image. This yields an accuracy score for the
reconstructed two-class map.

5. RESULTS

The onboard adaptive exploration algorithm adapted to
identify informative paths along the exploration corridor.
Figure 3 shows the end of the trial after the rover has
traveled 0.46 kilometers. In this trial, which lasted ap-
proximately 24 minutes, the rover chose a modified cov-
erage pattern that found an appropriate compromise be-
tween boundary-following and coverage. This image il-
lustrates the inference result with areas of dense basalt in
yellow and clay sediment in green. The map prediction
is uncertain in areas that are far from the rover path (con-
sider the unvisited basalt patch in the lower right), but
more accurate within the corridor. Samples generated by
the path planning algorithm offer a representative sample
from which a human could more easily construct a com-
plete interpretation of the environment.

Table 5 shows performance statistics resulting from 18
trials in this traverse area. Reported p-values result from a
one-tailed T-test against the hypothesis that performance
is equivalent to a static coverage pattern. Figure 7 plots
the number of features collected against reconstruction
error. In general the adaptive methods outperform static
methods, which in turn outperform the uniform and ran-
dom cases. Traverses based on DOQ overflight data per-
form best of all. DOQ trials are subject to the timing

0 50 100 150 200 250 300

Number of Features

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
a
p
 R

e
c
o
n
s
tr

u
c
ti

o
n
 A

c
c
u
ra

c
y

Adaptive DOQ

Adaptive ASTER

Fixed Coverage

Fixed Transect

Figure 7. Results of the experimental trials from Amboy
Crater: the number of spectrometer samples collected in
each run and the accuracy of the reconstructed map.

issues mentioned above, but we include this data here for
several reasons. The low variance among the DOQ ac-
curacy implies that the time budgets were not different
enough to pose a clear handicap or advantage. Moreover,
due to navigation irregularities between runs, the average
number of measurements collected was actually smaller
for DOQ trials than for the coverage patterns. The cover-
age patterns happened to drive through open terrain, re-
sulting in fewer obstacle-induced pauses.

Several trends are apparent. First, adaptive methods sig-
nificantly outperform static coverage patterns for α =
0.05. The variance in the number of features collected
is greater for adaptive methods than for fixed methods,
while the accuracy variance is reduced. This discrepancy
— greater variation in path choice, and less variation in
reconstruction results — might be related to the adap-
tive methods’ responsiveness to navigation obstacles and
spectrometer imaging conditions.

6. CONCLUSIONS AND FUTURE WORK

The Amboy Crater experiments demonstrate a system
that performs automated site survey on kilometer scales.
It begins with virtually no a priori knowledge of surface
materials. Instead it learns the relevant distinctions on the
fly and improves its exploration efficiency by leveraging
learned trends in spatial proximity and correlations with
remote sensing. The corridor exploration task exhibits
some artificial constraints, but demonstrates the essential
features of autonomous site survey.

Future work will also consider the selective data return
problem from the perspective of Bayesian experimental
design. While the execution is subtly different, exper-
imental design serves as a guiding principle for choos-
ing optimal observation subsets. We will also consider
more sophisticated feature classification methods; unsu-
pervised dimensionality reduction techniques could also
be used to distinguish many geologic classes for multiple-
output Gaussian processes. As the space of collected



spectra becomes more diverse, nonlinear dimensionality
reduction techniques may prove more appropriate. Fi-
nally, we aim to integrate the Gaussian process models
discussed here with intelligent spectra collection utiliz-
ing rock detection and visual servoing [25]. While there
is much scope for development, the Amboy experiments
provide a promising proof of concept for kilometer-scale
site survey by autonomous spacecraft.
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