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ABSTRACT

Future planetary rovers will travel autonomously
over the visible horizon where data collection se-
quences cannot be scripted in advance. These rovers
would benefit from an ability to autonomously iden-
tify science targets and deploy sensors. We present
an automatic method for measuring rocks using a
VIS/NIR reflectance spectrometer and solar illumi-
nation. Our approach leverages an automatic image-
based rock detection algorithm and SIFT keypoints
[7] that establish feature correspondence across im-
ages. This permits a rover to collect multiple spectral
target measurements in a single command cycle with
no direct human intervention. We present field tests
of the system at Amboy Crater in the Mojave Desert.
Here rock detection with visual servoing significantly
improves the diversity and purity of collected spec-
tra.

1. INTRODUCTION

Next-generation planetary exploration rovers will
soon be able to travel autonomously over the vis-
ible horizon and visit multiple geologic units in a
single command cycle. These surveys promise sig-
nificant benefits for planetary geology but also raise
an important challenge: at uplink scientists cannot
know the specific features of interest that the robot
will encounter. Data collection sequences cannot be
scripted in advance, and the robot itself must au-
tonomously identify science targets and deploy ap-
propriate sensors.

We present an automated method to obtain spectro-
scopic measurements of rocks using a VIS/NIR re-
flectance spectrometer and solar illumination. Here
a template-based detection algorithm finds rocks in
each new image. Scale-Invariant Feature Trans-
form (SIFT) keypoints [7] characterize previously-

Figure 1. Zoé at the Amboy crater site. The rover
travels between waypoints toward the goal while col-
lecting spectra of rocks. Actual field tests use a tra-
verse length of 50m. An image insert shows the
stereo rig and spectrometer foreoptic.

appearing rocks. This correspondence matching
yields a database with a unique position estimate for
each science target. The robot periodically pauses its
forward motion, performs visual servoing to aim the
spectrometer, and collects measurements from the
most promising targets. Our approach allows a robot
to collect dozens or potentially hundreds of spectral
measurements in a single command cycle with no di-
rect human intervention.

Previous research has examined automatic spec-
troscopy in the context of Single-Cycle Instrument
Placement (SCIP). This approach generally begins
with a human specifying a target in a panoramic im-
age. The rover advances toward the feature with



visual tracking, and then performs a “handoff” to
instrument cameras for fine tracking and arm place-
ment [1; 2; 8]. Pedersen et al. extend this model
to multiple targets [9]; their system demonstrated
high-accuracy instrument placement on 3 targets in
under 3 hours. Previous studies have also considered
the problem of autonomous rock detection. Castano
et al. show a system that incorporates rock detec-
tion with a resource-aware planner. Here the rover
schedules opportunistic followup images of detected
rocks that match a desired target profile. In other
work, Thompson and Castano’s survey of rock detec-
tion algorithms concludes that several are sufficiently
accurate to facilitate autonomous spectroscopy [11].

Our work differs from previous efforts in several re-
spects. First, we focus on reflectance spectroscopy
under solar illumination which obviates the need for
slow approach and arm placement maneuvers. Ad-
ditionally, instead of reacting to a single prespeci-
fied target our algorithm autonomously detects and
tracks multiple target rocks simultaneously. The au-
tonomous spectrum collection has a relatively high
failure rate compared to supervised SCIP meth-
ods. However, since there is no significant recov-
ery penalty these errors are not especially dangerous.
The rover can attempt many spectrum collection se-
quences and quickly acquire spectra from dozens of
rocks. The end result of the procedure is a spectral
map that provides a VIS/NIR profile of the transect.

This paper describes tests performed on a field rover
at Amboy crater in the Mojave Desert, California
(Figure 1). Here the rover traverses a field of rocks
along the contact between an eroded basaltic lava
flow and a sediment-covered plain. Accurate spec-
tral pointing proves necessary to produce clean spec-
tra that is uncontaminated by background sediment.
Tests show that rock detection combined with visual
servoing significantly improves the diversity and pu-
rity of collected spectra.

2. APPROACH AND ARCHITECTURE

We implement the spectral profiling algorithm on
an exploration robot “Zoé&” developed at Carnegie
Mellon to test Mars-relevant autonomy technologies.
Zoé’s science instruments include a 60cm-baseline
stereo rig and an ASD Fieldspec Pro VIS/NIR 350 —
2500nm reflectance spectrometer. The spectrome-
ter objective lens, or foreoptic, is mounted with the
cameras on a pan-tilt base that provides full 360°
coverage of the environment. The foreoptic’s field of
view forms a 1° sensing cone in space. Placing a tar-
get into this cone allows the spectrometer to collect
reflectance spectra under solar illumination.

In our operational procedure an operator specifies a
transect using a start location, a goal waypoint, and
a time budget. The rover drives from the start loca-

tion to the goal, producing a map of detected rocks
and spectra — that is, a spectral profile of the rocks.
The mapping procedure enforces a time constraint;
one could integrate it as an atomic command into
a larger mission plan with other drive or sampling
actions.

Figure 2 shows a software architecture developed
for the spectral profiling task. Owur architecture
assigns the tasks of data acquisition, image analy-
sis, and navigation to three independently-operating
software modules.

During operation the rover alternates between two
states: a travel state for navigation and a pause state
where it stops to collect spectra. During the travel
state the rover follows a series of waypoints between
the start location and the goal (Figure 1). The navi-
gation module drives the robot from one waypoint
to the next; it performs obstacle avoidance using
stereo terrain analysis and a D* path planning algo-
rithm. Meanwhile the data collection module com-
mands forward-looking images. The data analysis
module examines these images and inserts newly de-
tected rocks into a growing database of features.

A switch to the pause state requires two conditions:
First, there must be at least one unmeasured rock
within spectrometer range; and second, the current
traverse segment must retain sufficient time for a
spectrum collection sequence (to be described in Sec-
tion 4). The navigation module stops the rover when-
ever these criteria are met. This signals the data col-
lection module to begin spectrum collection. Every
successful sequence results in a new spectral mea-
surement which is then inserted into the database
and associated with the correct rock.

The rock database is central to the system and acts
as a medium by which the other components commu-
nicate. We implement this structure with a relational
database. The following information is associated
with each rock:

e An integer used as a globally unique identifier.

e A global 3D position estimate given in ECEF
coordinates.

e Pixel bounding boxes for each image in which
the rock appears.

e All SIFT features associated with the rock in
previous images.

e Visual and spectral attributes of the rock.
Details of image processing (rock detection, visual

features and rock correspondence) and spectrometer
pointing appear in Chapters 3 and 4, respectively.
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Figure 2. General architecture.

3. IMAGE ANALYSIS: ROCK DETEC-
TION AND CORRESPONDENCE

The system detects rocks using a variant of the Vi-
ola/Jones approach [12]. This method identifies rock
bounding boxes with a cascade of Haar-wavelet-like
filters. An Adaboost supervised learning routine
identifies a cascade of filters that discriminates be-
tween bounding boxes that contain rocks and those
that do not. Applying this cascade to a novel candi-
date bounding box yields a real-time detection algo-
rithm with reasonable rock detection performance.

In the rock detection domain, the lighting angle sig-
nificantly affects rocks’ appearance. We compensate
by training several parallel detectors on rocks lit from
different angles as described in Thompson et al. [11].
For a novel image we apply all cascades and use only
the results from the one returning the most detec-
tions. The rationale is that patches matching the
learned appearance of rocks are unlikely to occur
by chance. Most images contain several true rocks,
so the cascade which detects the most rocks usually
matches the illumination of the scene.

The image analysis stage filters detected rocks less
than 10cm in size that are too small for accurate
targeting. In addition we eliminate rocks that are
within 2m of the rover center; this prevents spuri-
ous detections from the rover body or shadow from
entering the database. The filtered result is a set of
valid potential spectrometer targets; Figure 3 shows
an example rock detection result from the Amboy
Crater tests.
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Figure 3. Detection result after filtering by rock size
and distance. Large red bounding boxes are potential
spectrometer targets, with numbers indicating rover-
relative position estimates. Small blue squares indi-
cate SIFT keypoints that are used for the correspon-
dence search. The front axle is visible in the lower-
right corner of the image.

3.1. Rock Correspondence

SIFT keypoints are stable image locations that are
invariant to scale and rotation and partially invariant
to affine distortion, change in 3-D viewpoint, addi-
tion of noise and changes in illumination [7]. The
image analysis software associates each rock to SIF'T
keypoints in its bounding box. We establish cor-
respondence across images by matching new rocks’
SIFT keypoints against previous keypoints stored in
the database.

A single traverse might view thousands of unique
keypoints so an unconstrained O(n?) correspondence
search is unsuitable for real-time visual servoing.
We constrain the search with geometric information.
Given the known absolute pose of the rover and the
relative orientation of the cameras the system de-
termines an approximate region (a radius of several
meters expressed in ECEF coordinates) expected to
contain the new SIFT keypoints. Keypoints that lie
outside this region are excluded from the correspon-
dence search.

We compare SIFT keypoints using the standard 128-
dimensional descriptor vectors describing the local
scale-invariant appearance of the patch [7]. We eval-
uate correspondence between SIFT descriptors by
calculating the Euclidean distance of the incoming
descriptor against each of the remaining candidates
in the database. We use the traditional SIFT match
criterion that requires a nearest-neighbor distance at
least n times smaller than the distance to the second
closest neighbor for an empirically-defined threshold
n [7].
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Figure 4. Correspondence with an existing SIFT de-
scriptor in the database requires that the match be
valid in both directions.

An additional criterion further reduces the number
of false SIFT matches. For each of the matches from
the Euclidean search we do an equivalent “backward”
search over SIFT descriptors in the new image. In
other words, we apply a similar Euclidean search for
nearest and second-nearest neighbors using the old
SIFT descriptor as the query and the new image’s
SIFT descriptors as the search space (Figure 4). A
match is only accepted when the thresholded Eu-
clidean match is valid in both directions.

A successful match implies that the SIFT descrip-
tor lies on a previously-detected feature. We update
the rock’s visual and position information along with
the SIFT descriptor’s record to reflect the fact that
illumination and aspect may have changed. We also
merge all instances of the rock in the database to
eliminate duplicate entries. If none of a new rock’s
SIFT descriptors match previous features it receives
a new unique entry in the feature database. SIFT
keypoints with no matches and that are not identi-
fied as part of any rock are assumed to belong to the
background and discarded.

Note again that we perform the correspondence
search on all STFT keypoints in the incoming image,
not just those belonging to a rock detection. In gen-
eral rock detection performance is less robust than
SIFT keypoint extraction; the rock detector often
fails to re-acquire a rock after changes in the view-
point. Therefore all SIFT features in the incoming
image are potential matching candidates. In order
to avoid flooding the database with irrelevant “back-
ground” keypoints we only record those keypoints
that match existing descriptors or belong to a newly
detected rock. In other words, all SIFT descriptors
stored in the database must have been identified as
part of a rock at least in one image.

3.2. Position Estimation

Two redundant methods estimate rock positions:
stereopsis and the groundplane. Stereopsis relies on
a 3D reconstruction based on SIFT keypoints. The
robust matching algorithm (detailed above in Sec-
tion 3.1) identifies any SIFT keypoints that appear in
both left and right cameras. A least-squares geomet-
ric reconstruction using a pinhole camera model and
radial distortion [4] yields a sparse reconstruction.
We use the 3D centroid of matched SIFT keypoints
as the rock’s position estimate. Alternatively, the
groundplane position estimation method serves as a
fallback whenever stereo matches fail. Groundplane
estimation uses a single image and assumes the rock
lies on a planar surface. This may be incorrect so we
favor stereopis whenever SIFT matches are available.

4. DATA ACQUISITION: SPECTROME-
TER POINTING AND ANALYSIS

The spectrometer pointing procedure attempts to
aim the spectrometer foreoptic at a target given
the target’s spatial position. This sequence has two
stages. The first kinematic step leverages a kinematic
model of the the pan/tilt mount and the most re-
cent rock position estimates from the database. The
second feedback step refines the initial pointing with
an iterative visual servoing approach that places the
target in a specific region in the image.

4.1. Calibration Procedure

Both kinematic and feedback steps rely on generic
models representing the location of the foreoptic
cone. We expect to place the center of the cone on
the target to maximize the probability of covering the
sample in full. We fit the parameters of the physi-
cal model using calibration data obtained in labo-
ratory tests. The main challenge of this calibration
is to accurately determine where the spectrometer is
pointing. Since there is no visual trace to determine
the field of view it is not possible to get 3-D mea-
surements directly. Instead we infer the field of view
using spectroscopic measurements of a known tar-
get. Our procedure uses a commercial 532nm green
laser pointer as a reference. For practical purposes
the narrow-beam laser projects to a single point in
space. The laser spot is easy to detect in collected
spectra due to a high peak in its center frequency.

4.2. Kinematic Model

Calibration points produce a kinematic model of the
foreoptic on the robot. Generic forward kinematic



equations solve for the pan and tilt angles # and a:

9:f9($,y,2,h,d,6) (1)
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Here (z, y, ) is the location of the rock in 3-D space,
h is the height of the robot, d is the distance between
the axis of rotation and the foreoptic, and [ repre-
sents other less-relevant parameters such as rotations
and translations of the foreoptic with respect to the
base. We perform an unconstrained nonlinear op-
timization over the parameters trying to minimize
the total square error of the predicted position. The
result is an estimate for h, d and 3. We refer the
reader to work by Calderén for additional details on
the kinematic model and calibration procedure [3].

4.3. Visual Correction

It is impractical to maintain a sufficiently accu-
rate model because many calibration parameters
are unstable or vary with time. Examples are the
changing tire pressure on the vehicle, inaccurate
pan/tilt angle readings, and occasional replacement
of parts. Therefore a spectrometer pointing system
based solely on a feedforward kinematic model will
inevitably exhibit some pointing error. We incorpo-
rate a second closed-loop visual correction step to
correct these errors and improve pointing accuracy.

Our visual correction method exploits the fixed
transform between the camera and the foreoptic.
Both devices are mounted to a single platform so
their relative position is constant regardless of the
mobile base’s pan and tilt (Figure 1 inset). There-
fore the center line of the spectrometer sensing cone
(cc line) is perceived as static by the camera and
projects onto a line in the image. The intersection
of the target with this line is fully determined by the
distance from the foreoptic to the target.

The cc line is not visible in imagery but its posi-
tion can be inferred using the laser reference. Since
the laser point is centered in the foreoptic’s field of
view, the laser spot in each calibration image corre-
sponds to a visible point on the cc line. We can re-
construct the entire cc line from multiple laser points
at different ranges. Perspective projection suggests a
model relating the depth of the target and associated
row/column pixels (Figure 5).

Pointing the spectrometer at a target is then equiva-
lent to varying the position of the foreoptic until the
target appears in a specific pixel of the image. This
defines an ”error” in visual space based on the cur-
rent and desired position of the target. The system
applies a simple visual servo [5] to correct it. We de-
termine the Image Jacobian that relates changes in
the camera position to changes in the image. This
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Figure 5. Row and column pixels of the foreoptic cen-
ter in the image given different ranges. Charts show
empirical calibration points and the best-fit model.

permits a proportional visual control law:

]ono(z]

Wpan

In this equation wpqy, and wy; are the estimated cor-
rections in pan and tilt, respectively. K is a constant
gain matrix of the control law, J, is the image Jaco-
bian, and (Au, Av) is the visual error in both image
axes. The procedure iterates the visual correction
until the error disappears. The result is a system
that can point accurately target features at ranges
up to 5 meters.

4.4. Collection of White References

The rover periodically renormalizes the spectrometer
against a white reference target. This compensates
for changes in illumination during the 40 minute tra-
verse due to sun angle and atmospheric phenomena.
We employ a standard VIS/NIR white reference tar-
get exhibiting high diffuse, Lambertian reflectance
that is mounted to the rover deck. The rover col-
lects a spectrum from the reference target every 7
minutes using a scripted sequence of pan-tilt actions.
All other software modules pause for this collection
procedure. During the renormalization the rover
straightens its axles and servos the pan-tilt unit to
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Figure 6. Spectra of basalt (blue - bottom line) and
clay (green - top line) at Amboy Crater under solar
illumination. High-noise ranges are caused by water
absorption bands in the atmosphere.

target the white reference. Rough terrain sometimes
results in poorly-oriented axles and — since the mast
is fixed to the front axle — incorrect pointing. The
rover senses this condition and aborts the attempt
in favor of another 60 seconds later. Occasionally
several attempts fail in succession; in these circum-
stances the rover continues trying every 60 seconds
until a white reference spectrum is successfully cap-
tured. After a white reference the rover resets the
standard 7-minute clock.

5. EXPERIMENTAL RESULTS

Experiments tested system performance in natural
terrain. We transported Zoé to a site at Amboy
Crater, California where two distinct materials can
be distinguished both visually and spectroscopically.
Basalt from lava flows appears as a dark material,
while the underlying clay is lighter in color. This
difference is also clear in VIS/NIR reflectance spec-
tra (Figure 6).

We performed experiments over consecutive days in
the fall of 2007. Clay predominates at the traverse
site, but scattered basaltic rocks up to 30cm in length
are also visible. Given that only these two materials
are present, the collected spectra easily quantify the
system’s rock targeting accuracy. We performed 4
experiments at different times of day under varying
atmospheric conditions. The robot traveled approx-
imately the same 50m transect with each trial.

Figure 7 provides the spectral profile resulting from
a typical transect. The background shows a georegis-
tered visible-band overflight image for context. Small
black dots show rock detections from the database,
while large colored dots illustrate collected spectra.

rocks
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. o

10m
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Figure 7. A spectrometer profile of a transect. A
white square shows the final rover position. Small
black and large colored dots respectively represent de-
tected rocks with and without associated spectra. The
map reflects the fact that density of rocks is high at
start of the traverse and decreases near the end.

Table 1 gives performance results from each trial; the
following sections explain each column in detail.

5.1. Rock Detection

We use the rock detection success criterion of
Thompson et. al [10; 11] requiring that at least
50% of the detection contain a rock. The fourth
column of Table 1 summarizes the resulting detec-
tion scores. The accuracy of our system is consistent
with, or slightly better than, previously reported per-
formance for this rock detection algorithm on bench-
mark datasets [11]. We attribute any performance
advantage to particularly favorable field conditions:
the images all show dark, regularly-shaped rocks
against an even light-colored background. Note that
detection performance decreases at later hours of the
day as the zenith angle of the sun increases. Long
shadows are generally absent from the training set
and often cause false-positive detections.

5.2. Tracking and Correspondence

Here we consider system performance in complet-
ing the visual servoing procedure. The main failure
mode occurs when the system is unable to match a
target’s previous SIFT descriptors to those in a new
visual feedback image. For a successful correction
sequence the system must match some new SIFT de-
scriptor to previous descriptors, finding the intended
rock and reacquiring it for each of the 2 — 5 visual
servoing iterations. Overall sequence success rates



Table 1. Details of individual trials at Amboy crater.

Trial Time Conditions Rock Detect. Precision Tracking Successes Basalt Spectra
1 12:26 - 13:06 Moderate Clouds 332/361 (92.0%) 26/50 (52.0%) 22/26 (84.6%)
2 13:15 - 13:55 Sun 249/280 (88.9%) 32/52 (61.5%) 27/33 (81.8%)
3 11:38 - 12:18 Sun 280/296 (94.6%) 29/43 (67.4%) 18/29 (62.1%)
4 12:27 - 13:07 Sun 299/340 (87.9%) 26/46 (56.5%) 17/26 (65.4%)

appear in the fifth column of Table 1. This measure
does not consider the feature itself (i.e. whether the
target was a true rock or a false detection), but is
based simply on the system’s ability to track arbi-
trary SIFT descriptors. Thus, it eliminates the in-
fluence of the rock detector.

Many descriptors stored in the database never reap-
pear during the visual correction process so it is not
always possible to reacquire a particular rock. Sev-
eral causes may be at fault: changes of appearance of
SIFT keypoints due to changes in illumination, rover
pose, or shadows of the rock or the rover; a large
number of similar SIF'T descriptors in the database
that prevents any confident match; or a SIFT key-
point that lies outside the camera’s field of view (un-
likely in practice due to wide-angle cameras and ro-
bust rover position estimates).

Analyzing individual trials, we observe a lower per-
formance in the first trial than the second (trials oc-
curred consecutively on the same day). Many clouds
were passing overhead during the execution of the
first trial, causing significant changes in the light lev-
els and complicating the SIFT descriptor matching.
This is reflected in the captured data: failures cluster
in adjacent tracking attempts whenever environmen-
tal conditions change abruptly. Trials 3 and 4 were
also taken consecutively. The success tracking rate
for trial 3 is slightly better; this may reflect a slower
rate of illumination change when the zenith angle of
the sun is higher.

In general we observe a tracking performance of over
55% when the light levels are favorable. An in-
creased number of tracking failures causes the system
to spend more time looking for known rocks present
in the database, but does not affect the quality of
collected spectra.

5.3. Spectrometer Pointing

Finally we quantify the accuracy of the spectrometer
pointer to physically track rocks. We manually ana-
lyze each captured spectrum and classify it either as
basalt or clay given that the spectra for both materi-
als are known (Figure 6). The final column of Table
1 summarizes the result.

Classification of signals as soil or basalt is based
on a principal component analysis (PCA) noise-
reduction strategy, followed by a simple linear de-
convolution. In principal component space only one
variable exhibits a large variance; this corresponds to
the basalt/clay distinction. We use PCA as a noise-
reduction strategy, projecting collected spectra onto
the first component vector and reconstructing the
signal to produce a filtered spectrum. In order to in-
terpret the PCA coefficient we apply a linear decon-
volution with representative samples of pure basalt
and clay. The result is the percentage of basalt that
is present in the mix. Spectra showing at least a 50%
basalt are classified as a success.

The system presents a relatively high variance when
hitting targets but consistently exhibits accuracies
higher than 62%. Many factors influence the number
of missed targets; some are intrinsic to the method
while others relate to environmental conditions. This
causes changes between trials and a large between-
trial variance. Factors affecting system accuracy in-
clude: stereo estimate errors; errors introduced by
the ground plane assumption when stereo is not
available; spurious rock detections; tracking visual
features lying out of the rock (e.g. background or
shadow); tracking visual features lying in the bor-
der of the rock (SIFT features are not guaranteed to
be in the center of the rock); and SIFT mismatches
during the tracking procedure.

5.4. Comparative Results

We compare system performance against status quo
capabilities by performing three additional trials in
the same testing area. In these trials the robot holds
the pan/tilt unit at a fixed —30° declination and
blindly captures spectra at regular intervals during
forward travel. Slight, inevitable perturbations of
the start location (on the order of 10 — 20em) ensure
that the foreoptic’s field of view sweeps over different
areas for each 50m traverse.

The results of the blind spectral mapping trials ap-
pear in Table 2; no spectral measurement of basalt
appears in any of the spectra from any of the trials.
This demonstrates the difficulty of the testing area;
rocks were generally small and scattered. Therefore



Table 2. Tracking performance for periodic (blind)
spectroscopy.

Trial Basalt Spectra

1 0/68 (0.0%)
2 0/67 (0.0%)
3 0/64 (0.0%)

it is highly unlikely that a target would fall by chance
into the spectrometer field of view during the pe-
riodic spectrum acquisition. Our pointing strategy
outperforms the blind method; each trial measures
at least at 26 individual rocks over a 50m traverse
lasting no longer than 40 minutes.

6. CONCLUSIONS

This work describes the development, implementa-
tion and testing of new techniques for automatic re-
flectance spectroscopy for multiple rocks in natural
terrain. The system can autonomously travel long
distances, detect rocks and acquire spectral measure-
ments on the fly. These results are relevant to sci-
ence autonomy for next-generation planetary explo-
ration systems that accumulate spectral databases
and build geologic maps of the traversed regions.
The main contributions of the work are the following;:

e A system for rover-based VIS/NIR reflectance
spectroscopy using solar illumination and an au-
tomatic white-reference calibration.

e The integration of autonomous rock detection
with correspondence matching through SIFT
features. Together these permit a database of
unique rocks and their positions.

e Development of a procedure to calibrate a spec-
trometer to rover frame and camera views based
on a kinematic targeting followed by a visual
feedback correction. The procedure is capable
of targeting individual features at ranges of up
to 5 meters.

e A new data product — the spectral profile —
that allows the piecewise integration of au-
tonomous spectra collection into mixed mission
plans containing both scripted and autonomous
actions.

We have tested this system in a planetary analog
field setting and measured its performance in multi-
ple trials. In each trial the rover traverses 50 meters
in 40 minutes while consistently collecting spectra of
at least at 26 individual rocks.
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