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Introduction: Spatial point processes describe
the arrangement of discrete objects on the plane [1,2].
Here we use them to model clustering patterns for
approximately 500,000 boulders in a HiRISE orbital
image. Summary statistics suggest varying degrees of
aggregation at different image locations. Nevertheless,
the overall clustering behavior exhibits considerable
structure and local continuity. The space of observed
summary statistics has a low intrinsic dimensionality,
and the observed clustering is well-described by a
small handful of archetypes.

Image and Preprocessing: The HIRISE
instrument aboard the Mars Reconnaissance Orbiter
captures high-resolution visible-light images. Here we
examine the orthorectified image TRA_000828_2495
containing 31,000x16,000 pixels at a resolution of
about 0.31m/pixel [3]. It centers on a point in the
Northern Plains at 69.3 degrees latitude, 130.2 degrees
East longitude. This original image appears in figure 1.
It shows a plain strewn with boulders up to several
meters in size. We aim to model the spatial
distribution of these boulders, their clustering behavior
and the differences across image locations.

The large number of boulders makes
comprehensive manual labeling impractical. Instead
we identify rocks automatically. In the general case
rock detection is a difficult image analysis problem
[4]. Fortunately, the strong directed lighting in this
image causes each rock to cast a dark shadow. One
can identify these shadows by looking for contiguous
blobs of pixels below a constant intensity threshold.
We reject single-pixel shadows to reduce noise, and
use the centroids of remaining shadows as a proxy for
rocks' locations.  This initial processing gives the
image pixel locations of 498,582 rocks. Figure 2
shows a kernel-based estimate of the number of rocks
per pixel at each location in the image.

Method: We use point processes to describe the
spatial distribution. Point processes models can
describe gaps and aggregation in spatial data. Previous
research has used them to model geophysical features
like rootless cone groups [5] and Venusian craters [6].
Reseearchers commonly characterize spatial point
processes with diagnostic summary statistics. Moller
and Waagepetersen provide extensive discussion [2].

Here we consider two summary statistics related to
nearest-neighbor properties. The empirical nearest-
neighbor function G(r) gives the probability of an

observed point's nearest neighbor appearing at any
given distance r. It describes the degree of
aggregation or regularity in the point process. The
second statistic is the empirical empty space function
F(r). This gives the probability of a random empty
location having a nearest neighbor at a given distance
r. This characterizes the gaps between clusters.

We divide the image into a grid of 500x500 pixel
subwindows and calculate summary statistics
independently for each subwindow. A Kaplan-Meier
estimator [2] corrects for edge effects. The result
associates each subwindow with two curves
representing a particular instantiation of the summary
functions. These curves define two vector-valued
attributes totaling over 140 dimensions.

Results: The eigenvalues of the two statistics'
covariance matrices indicate the relative importance of
each principal component. In this case the variance
between subwindows is nearly unidimensional; for
each statistic the first covariance matrix eigenvalue is
larger than the second by an order of magnitude. Thus
we can describe the curves using their first principal
components while preserving the vast majority of
inter-subwindow variance. After projecting the
summary statistics and normalizing for contrast we

Figuré 1: Original Image

Figure 2: Empirical density of boulders
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Figure 4: G function estimates for four subwindows.
These plots use different horizontal scales for distance
r to compensate for rock densities in each subwindow.
Nearest-neighbors closer than five pixels are rare due
to finite rock diameters.

map each to a color intensity: yellow for the G
function and blue for the F function. This produces a
color representation of the boulders' -clustering
patterns as they vary across the image (Figure 3).

We study four archetypal subwindows labeled A,
B, C, and D. Figure 4 shows a larger view of each
subwindow. The associated plots show the observed
G functions alongside the theoretical G function
generated by complete spatial randomness (CSR). The
complete spatial randomness curve is diagnostic of a
process with no underlying structure. Subwindow A
has a G function value above this curve, suggesting
aggregation relative to a random process. On the other
hand, subwindows B and C show atypical regularity as
evidenced by G function values below the theoretical
curve for complete spatial randomness.

The plots of figure 4 also indicate lower and upper
envelopes for 100 actual simulated trials of a
completely random process. The empirical G
functions for subwindows A, B, and C fall outside this
envelope, motivating us to reject complete randomness
as a model for these patterns. We cannot reject
randomness in subwindow D based on its G function
behavior alone. However, a more powerful test might
still reject CSR on other grounds.

The plots in figure 4 also show the G function
estimate resulting from a hand-labeling of the rocks in
each subwindow. These manual analyses follow the
general behavior of the automated estimates; the
largest errors occurs in subwindows A and B that
contain small rocks with weak shadows.

Discussion: This work shows how diagnostic
techniques for spatial point processes can reveal
hidden structure in the distribution of features from
high-resolution orbital data. Automatic feature
detection permits efficient analysis of hundreds of
thousands of rocks spread over many square
kilometers. A more complete analysis might consider
boulders' size or a broader range of summary statistics.
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