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Two basic auroral processes are investigated using a novel 2.5D PIC code which

supports the presence of a gravitationally-bound density gradient atmosphere.

An electrostatic version of the code is used to investigate cold, narrow (8.4λDe)

electron beams incident upon the gradient. Solitary structures are observed to

form and interact strongly with the density gradient. Identified as electron phase

space holes, they are observed to experience a gradient-ward (downward) acceler-

ation force which compresses solitary structures as they move out of the gradient

or rarefies them as they pass into the gradient. Complex mergers and other inter-

actions are observed, including a fractal-like progression of streaming electrons

causing phase space holes and vice versa. These structures appear to be similar

to the “fast solitary waves” identified by the FAST satellite. An electromagnetic

version of the code employs a restricted Darwin scheme to launch oblique, inertial

Alfvén waves into a similar gradient. Strong wave reflection is noted as well as

parallel wavelength modification. However, further analysis is hampered by insuf-

ficient computer memory. Necessary modifications of the simulation setup that
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CHAPTER 1

Introduction

1.1 History

The auroral region has aroused the curiosity of observers both trained and un-

trained for millenia. Glowing curtains of light ranging from yellow-green to blue,

purple, and blood-red, their luminous, ever-changing displays seem to magically

appear in the sky without external prompting.

The first recorded aurora sightings may have occurred as early as 2000 BC

[KR95] by Chinese astronomers. Galileo in the 1500’s proposed that the aurora

was caused by air rising out of the Earth’s shadow where it was illuminated by

sunlight; he also coined the name Aurora Borealis meaning “Dawn of the North.”

In 1716, Halley saw an aurora at the age of 60 and theorized that it was ordered by

the direction of the Earth’s magnetic field. Later, in 1731, the French philosopher

de Mairan suggested that the aurora was connected to the solar atmosphere and

suspected a connection between the aurora and sunspot activity. In 1860, Elias

Loomis identified what is now called the auroral oval, the region in which most

aurora occur. In 1902, G. Marconi bounced radio transmissions off what would

come to be recognized as a charged ionosphere. Birkeland in 1909 constructed

a small magnetic sphere (“terella”) as a model for the Earth and showed that

aurora-like patterns can form when cathode rays were sent towards it. In 1943,

Hoffmeister observed that a comet’s tail is not merely a radial projection away
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from the sun but lags behind such a radial projection by ≈ 5deg, proving the

existence of a streaming solar wind comprised of charged particles in the plasma

state. This mass of streaming solar emission was believed to be the source for

auroral particles. In 1957, Hannes Alfvén suggested that the solar wind should

be modelled as a plasma with a magnetic field throughout. In October that same

year, Sputnik was launched. Since that time our understanding of the aurora and

all space plasma processes has exploded with the advent of space probes. Yet

each advance of our knowledge has uncovered yet deeper puzzles that continue

to challenge our theoretical understanding and technical prowess to this day.

1.2 Auroral Region Survey

Our modern understanding of the auroral region results from the sum of many

orbital sensor platforms and rocket flights. Measurements become increasingly

more difficult and expensive as the distance from the Earth’s surface grows; thus,

considerably less is known of the precise geometry of the distant regions bordering

on interplanetary space from which the auroral power is obtained.

Initially, as one moves away from the Earth’s surface, the atmosphere is com-

pletely neutral and possesses radical changes in temperature as shown in figure

1.1. However, once an altitude of 90 km is achieved, the surrounding gas temper-

ature increases by two orders of magnitude above the highest value found below.

The density then begins to rapidly decrease, and a new form of matter, that of

plasma, is seen in increasing abundance. This region, known as the thermosphere

or ionosphere, is the boundary between the cold, dense, neutral atmosphere and

the hot, sparse, charged magnetosphere. Here, the auroral curtains are seen to

occur with heights up to 500 km and thicknesses of up to 50 km. The luminous

curtains were shown to be created from high-energy electron beam sheets with
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Figure 1.1: Details of the Atmosphere-Ionosphere Boundary
Note the explosive growth in temperature once the Thermosphere is entered
(Ionosphere). The top of the chart is the average polar spacecraft orbit altitude.

peak energies around 5 keV [McI60] [Boy75]. The highly non-thermal nature

of these streaming electrons led to the postulation of accelerating electric fields

within 1 − 2 RE [Eva68] [Eva74]. The suggestion of electric fields parallel to

the static magnetic field of the Earth (“field-aligned potential drops”) was met

with high skepticism, as in many plasmas such field configurations are instantly

shorted out by parallel currents. However, the matter was settled in the favor of

a parallel electric field “acceleration region” when the S3-3 satellite showed clear
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evidence of O+ ions being accelerated upwards by the same electric field which

was hurtling electrons down towards the ionosphere [SSJ76] [Joh79] [Miz81]. As

shown in figure 1.2, the primary auroral activity (from visible curtain to acceler-

ation region) encompasses the bottom of the ionosphere (altitude 102 km) to the

near magnetosphere (105 km) through a region 103 times larger in height than

the height of the neutral atmosphere. On the nightside magnetosphere lies the

inner tail which is responsible for energy storage in the form of magnetic flux

captured from the solar wind via magnetic reconnection and dipolarization of

the Earth’s intrinsic field [McP70]. This region provides the power necessary to

drive the violent substorm events which disturb the otherwise quiescent aurora

[Aka64]. The origin of the parallel electric fields which drive the auroral electrons

downward has been a topic of great debate since its first postulation. Recently,

Borovsky summarized twelve acceleration mechanisms and compared them to ob-

served aurora properties of thin arcs [Bor93]. None proved adequate to explain

the data. This issue remains at the forefront of current auroral research.

1.3 Solitary Structures

In 1982, Temerin et al. [TCL82] recorded the first observations of solitary waves

in the upward current region between the altitudes of 6000 and 8000 km using

the S3-3 satellite. These negatively-charged structures possessed parallel electric

field amplitudes on the order of 1 mV/m with a parallel scale length of ≈ 10λDe

and a parallel speed of at least 50 km/s (ion acoustic velocity). In a collective

100 minutes of data, six groups of interspersed double layers and solitary waves

were found only in regions where upgoing ion beams and electron pitch-angle

distributions indicated the presence of a parallel electric field above and below

the satellite.
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Figure 1.2: Regions of the Night-Side Auroral System
The ionosphere is typically explored by low-orbit satellites (mapping & surveilance) as
well as non-orbiting scientific rockets. Higher regions require shuttle flights or high-
orbit satellites (geosynchronous, communication, & weather).

Viking greatly extended the S3-3 observations in the same region, reporting

the presence of small-scale (100 m ≈ 5-50 λDe ), large amplitude, rarefactive

(δn/n0 ≈ 50%) solitary waves of negative potential (Φ < 2V ) [BGH88]. These

structures were seen to be moving upwards along the magnetic field lines at speeds

between 5 and 50 km/s and were interpreted as ion holes. The Freja satellite later

confirmed these findings [DEB94] at an altitude of 1750 km, capturing a solitary
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structure without any other wave activity of importance surrounding it. The

structure had a density depletion of 13% with an accompanying electric field

pulse of 10 mV/m.

Matsumoto et al. [MKM94] showed strong evidence that the broadband

electrostatic noise (BEN) is generated from discrete, electron-supported solitary

structures instead of a continuous, broad spectrum excitation. Coining the term

electrostatic solitary wave (ESW), they observed 2 ms structures with amplitudes

of 200 μV/m and velocities in the thousands of km/s. Omura et al. [OKM94]

[OMM96] performed many simulations to support the Geotail observations of

solitary structures. Through an investigation of many beam-related instabilities,

they discovered that electrostatic solitary waves, ion acoustic waves, Langmuir

waves, and both linear and non-linear electron hole modes could be generated

from various initial simulation setups, thus offering many possible candidates for

the observed structures.

Very large solitary structures of the sort Temerin observed were seen by Mozer

et al. [MET97] using the POLAR spacecraft in the upward current region at an

altitude of 2 RE . These reached parallel electric field amplitudes of 200 mV/m.

They were observed to move at speeds greater than 80 km/s. However, in the

same observational series, Mozer et al. found much briefer spikes (100 μs instead

of 10 ms) similar to those observed by Matsumoto et al. with amplitudes of 20

mV/m and repetition rates on the order of the hydrogen ion cyclotron frequency.

The velocity of these smaller structures was in excess of 100 km/s. Low-energy

down-going electrons were also associated with these events. Additional PO-

LAR sightings of these structures occurred at higher altitudes (5-7 RE) [FKP98]

[Cat99]. Cattell et al. showed that, at these high altitudes, positive potential

electron holes with scale sizes on the order of 10’s of Debye lengths and velocities
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of thousands of km/s propagate up and down in the plasma sheet boundary layer,

whereas at the leading edge of the high altitude cusp, they are only observed to

move downward.

In 1998, FAST discovered more evidence for these new solitary structures asso-

ciated with energetic electron flux variation in the downward current region at an

altitude of 4200 km [Erg98] [ECM98b]. These powerful, fast structures are found

to be within or near large-scale, quasistatic parallel potentials and themselves

bear amplitudes of 100 mV/m or more, the largest with potentials of up to 100V.

With bipolar parallel E and monopolar perpendicular E profiles, these structures

appeared similar to those fast structures recently observed by Mozer et al. from

POLAR data and move against the current. They appeared to have a Gaussian

perpendicular density profile with a size scale of 2 λDe (87 m) and a velocity of

≈ 500 − 5000 km/s= 0.05 − 0.5vTe. They consisted of a 10% density depletion

with a net positive charge surrounded by a net negative halo. Established as

electron holes, they were given the name “fast solitary wave” to distinguish them

from the ion acoustic-scale, negative-charged structures previously observed. In

the region where they were observed, the electron gyro to plasma frequency ratio

varied from 5 to 15, suggesting an essentially 1D generation mechanism. Bale et

al. [BKL98] also found similar structures in the terrestrial bow shock ramp using

the Wind spacecraft.

1.4 Relevant Solitary Structure Simulations

Many simulation attempts have addressed the lower auroral region below the ac-

celeration region (≈ 4000 km < 1 RE) where electrons have already been highly

energized and stream downwards into otherwise quiescent ambient plasma in the

hopes of addressing fast solitary waves and BEN. Singh et al. [STC85] [STS00]
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explored a host of auroral plasma processes in a novel 2D pic simulation. Assum-

ing x-periodicity but imposing Φ = 0 at z=0 and Ez = 0 at z=L, the simulation

permitted particles to enter the system as prescribed by an algorithm which

sought to keep the densities constant at either boundary; particles were permit-

ted to freely exit. This new code permitted the total system particle number to

change as well as the formation of large-scale field-aligned electric potentials. The

background ions were given an upward drift, and an electron beam ranging in

width from 6-32 λDe (with an x system extent of 64 λDe) was injected downward

from the top boundary. Results included analysis of beam slowdown mechanisms

which formed what were identified as “double layer” structures (sharp, slowly

evolving field-aligned changes in potential) which were critically dependent on

the injected current density. Their analysis showed that high-frequency (≈ ωpe)

initial wave energy was transformed into a much broader spectrum reaching as

low as ω < Ωi. Later, the double layers were recognized to be potential struc-

tures likely resulting from electron vortex holes due to a beam-plasma interaction

and eventual decay. Later work extending this simulation into 3D showed few

additional results [SLW00]. Unfortunately, due to the computers available, the

number of particles per cell was extremely low (4 to 9) and resulted in consider-

able noise that made data analysis difficult. To overcome this, temporal averaging

was often used at the cost of blurring the high frequency structure.

More recently, simulation efforts have focussed on the interaction of preex-

isting beams of particles in fully periodic systems. The models have ranged

from 1-D simulations to 2D rectangular grids of various aspect ratios [OMM96]

[MPR97] [MOM98] [MOM00]. The very long time behavior of such beam-plasma

interactions has been examined by Goldman in 2D [GON99]. In each case, the for-

mation of a variety of solitary structures was commonly observed and interpreted

in terms of bump on tail, two-stream, or beam plasma instabilities, depending on
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the initial simulation setup. Unfortunately, the use of periodic systems eliminates

significant auroral processes and interpretation. Fully periodic systems focus on

absolute instabilities instead of convectively-driven interactions. The total numer

of simulation particles cannot change, despite heating or ponderomotive forces

that would otherwise dominate density rearrangement in the box. Finally, gradi-

ents of any sort cannot be included in any periodic simulation despite their very

significant presence in the auroral system.

In a paper by Winglee et al. [WPD88], an electrostatic simulation was de-

scribed which included a magnitude 4 density contrast linear gradient in the

background electron and ion density. A suprathermal beam of electrons and ions

was injected into the simulation and the transient effects noted. Mean beam

speed slowdown was examined as well as the large transfer of energy to the back-

ground populations and, curiously, to the acceleration of beam electrons above

injection speed. While an excellent first attempt to model a density gradient, this

simulation suffered from a significant drawback: there can be no equilibrium con-

figuration in this simulation due to the unsupported density gradient. Without

an equilibrium base-line with which to compare the beam study, a short run-time

(ωpet < 150) was forced and hence limited observation of the beam interaction

dynamics. Further, the noise generated by such a density gradient as it decays

may have heavily disrupted and altered the signatures of other plasma events,

including the very solitary structures under investigation. Lastly, the number

of particles in the simulation was again held constant with reflective conditions

on all boundaries except the bottom (dense) side where escaping particles were

forcibly re-injected with freshly initialized velocities. Although such forced rein-

jection is a valid first attempt to include the effects of ionospheric collisions, the

lack of ability for the plasma to rid itself of particle density even when being

heated or driven by wave energy may have removed significant effects common
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to the auroral region. Although a step forward, there was clearly a need for ad-

ditional non-periodic, gradient-based studies of beam-plasma interactions which

would help shed light on the nature of the solitary structures observed in the

auroral system.

It is important to note that in all the above simulations, the observed BGK

modes do not persist for any significant length of time. Immediately after satura-

tion, they rapidly degrade in a manner which is not consistent with the observa-

tions of solitary wave structures in space. The extension of the structure lifetime

is therefore of great concern in future simulations.

1.5 Alfvén Waves in the Auroral Region

Rocket flights in the middle 80’s [GHM84] observed Alfvén waves descending

into the ionosphere; at an altitude of ≈ 1 RE the waves had an amplitude of

3 mV/m which yields a flux of 0.02 ergs/s/cm2. This is approximately 1% of

the precipitated electron energy flux in the auroral regions. In 1990, rocket

flights into the very low altitude auroral region (770km) showed Alfvénic waves

with amplitudes greater than 100 mV/m associated with intense, field-aligned,

low-energy electron fluxes (200 eV). These waves were seen to have downward

Poynting flux (10 ergs/s/cm2) with little sign of reflection [BCM90]. In 2000, the

Polar spacecraft passed repeatedly near the boundary of the plasma sheet (4-6

RE) and found strong evidence of surface Alfvén waves propagating towards the

ionosphere. With electric field amplitudes of up to 100 mV/m, the observed waves

possessed sufficient flux (2 ergs/s/cm2) that, when mapped down to the auroral

region (100 ergs/s/cm2), they can provide sufficient power to drive the auroral

processes which require energetic input of ≈ 30 ergs/s/cm2 [WKC96]. The waves

were observed to have phase velocities of 4000-10000 km/s and, in some passes,
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showed evidence of interference due to reflected waves. Freja observations have

shown that such auroral Alfvén waves have small transverse scale lengths on the

order of the electron inertial length (≈ 1 km) [Lou94]. As a parallel electric field

is key to the transfer of Alfvénic energy to the background plasma, we will now

turn our discussion towards such theory.

In their purely parallel state, “ideal” Alfvén waves have no parallel component

of E and as such seem unrelated to the accelerating potential drop of the aurora.

However, a variety of mechanisms have been identified to permit Alfvén energy to

be transferred to the parallel motions of background electrons and thus provide

additional models for auroral accelerating fields. By assuming the regime
m

M
<<

β << 1 (
m

M
is the electron to ion mass ratio), Hasegawa [HC75] [HC76] [Has97]

showed that Alfvén waves can resonantly convert from MHD surface waves in such

a way as to have a perpendicular wavelength comparable to the ion gyroradius,

resulting in a dispersion relation:

ω2 = k2
‖V

2
A

[
1 + k2

⊥ρ2
i

(
3

4
+

Te

Ti

)]
(1.1)

Such obliquely propagating Alfvén waves have a parallel E component and hence

may accelerate particles [HM78]. However, just above the auroral ionosphere

β <<
m

M
becomes true, with the electron inertia terms dominating any pressure

or finite ion gyroradius effects [GB79]. This leads to a wholly different dispersion

relation:

ω2 =
k2
‖V

2
A

1 + k2
⊥c2/ω2

pe

(1.2)

Named the inertial Alfvén wave, it is the dominant wave beneath ≈ 4 − 5 RE

[Goe84], whereas the kinetic Alfvén wave shown in equation 1.1 applies above this

altitude [HU82]. These waves also have an intrinsic parallel E component. Lysak

developed a model based on the inertial Alfvén wave to help explain small-scale

auroral currents and geometry [LD83] [Lys90]. Theoretical work for the region of

11



Figure 1.3: Reflected Alfvén Model

transition from kinetic to inertial was also provided [LL96]. Three-dimensional

simulations of inertial Alfvén waves were investigated in a bounded system by

Seyler [Sey88] with observations of wave evolution through shear flow and the col-

lisionless tearing mode instability via the inertial parallel electric field. Particle

acceleration via this same setup was later studied [TMB86], and electron conics

have been generated [TL96]. Large amplitude, short perpendicular wavelength

Alfvén waves can accelerate electrons well beyond the Alfvén speed [HS92]. The

details of such small transverse scale length waves have been thoroughly inves-

tigated by Morales and Maggs [MLM94] [MM97]. Evidence for the existence

of these small perpendicular wavelength waves in the natural plasma of the au-

roral region has been building from sounding rockets [BCM90] as well as Freja

observations [Wah94] [Lou94] [BCP95].

Aside from the theory that Alfvén waves directly accelerate particles suf-
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ficiently to explain the auroral curtain, another model [Hae83] appeals to the

reflection of Alfvén waves off the upper ionosphere (figure 1.3). The principle in-

volves the application of a large, quasi-static perpendicular electric field generated

by the superposition of incident and reflected Alfvén waves upon the ionosphere.

The resulting self-consistent electrostatic Φ solution within the ionosphere then

necessarily includes a parallel component of �E which could accelerate electrons.

In either case, the role of Alfvén waves in the formation of auroral processes

seems a strong possibility, but the mechanisms by which energy is transferred

from wave to particle remains to be clearly identified. The explication of these

mechanisms is of great interest in the modern plasma community.

1.6 Relevant Alfvénic Simulations

In a paper by Goertz [GWN91], an electrostatic 2.5D PIC simulation with pe-

riodic boundary conditions in x but dynamic Φ Neuman boundaries in z was

presented. It permitted particles to freely enter and exit the box without any ar-

tificial correlation between the two rates. Goertz employed complex fluid-theory

cells surrounding the simulation to create a model of a feedback-driven bound-

ary condition for incoming particle flux. A number of interesting results were

extracted from this simulation before the researcher’s untimely death, including

spontaneous solitary structure formation. His original setup attempted to sim-

ulate the launch of an electrostatic Alfvén wave into a uniform density plasma

via the manipulation of the magnetospheric boundary. By causing the top Ez

boundary of the simulation to ramp up to a sinusoidal Φ pattern with a prescrib-

able x wavelength, conditions were created to drive parallel currents within the

simulation in a manner related to an incident Alfvén wave. A coherent current of

injected particles supporting the Φ pattern was then provided by introducing a
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drift into the Maxwellian distribution of injected particles. Density cavities due

to electron heating by plasma waves were noted and suggested as explanations

for the auroral density cavities. Investigations of the critical current support the-

ories that the currents are regulated by reflected Alfvén waves striking back at

the wave source to modify its output and maintain sub-criticality. Some evidence

was also found for the development of an accelerating potential within the box.

Unfortunately, the only gradients which could be observed were those generated

by the incident wave flux which, though interesting for cavity formation, have

no bearing on the strong magnetic and particle density gradients present in the

background populations of the auroral region. The further restriction of the elec-

trostatic nature of the code eliminated much of the potential Alfvénic evolution

and interaction likely to be present in the natural auroral system.

Related work has been done by Génot and Louarn [GLQ99] [GLM00] in which

a fully periodic, electromagnetic, 2-D, guiding center PIC code was used to study

the evolution of an Alfvén wave in the presence of perpendicular density gradients

such as are present in the auroral density cavities. These simulations revealed

the formation of strong parallel electric fields which efficiently accelerated parti-

cles. They were not able, however, to study interactions with a parallel density

gradient. Further, their Alfvén wave was imposed throughout the system rather

than being launched from the boundary, creating transient effects unlike those

which would naturally occur convectively in the auroral system.

1.7 Intended Study

We intend to investigate two processes relevant to the aurora system. Before we

begin, chapter 2 will describe our particle simulation code in great detail. Then,

in the first part of our work, chapter 3 will focus on streaming electron processes
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which normally occur in the lower auroral region below the acceleration region

(≈ 4000 km < 1 RE) where electrons have already been highly energized and

stream downwards into otherwise quiescent ambient plasma.

Despite the excellent work done to explain observed fast solitary waves with

streaming electron beam simulations, most simulation Φ signatures remain very

unlike those observed by spacecraft (figure 1.4). Omura [OKM94] and Goldman

[GON99] depict regular, smooth instability-driven waves which then settle into

saturated BGK structures. These coalesce into 2-D cylinders and proceed to

slowly dissipate through complicated mechanisms. Yet space shows sharp, strong,

isolated structures having apparently propagated far from their source region.

One possibility is that the assumption in most simulations of an infinitely wide

beam fails to include significant surface physics. Structure in the auroral curtain

occurs on the order of 100m, a scale which corresponds to a single λDe in the

magnetosphere; thus, many of the electron beams driving the aurora are clearly

of finite and indeed very narrow width. Second, inhomogeneity in the background

density is also ubiquitous in the regions through which electron beams might form

solitary structures.

In this work, we will address the above considerations of finite width and

background inhomogeneity to determine their effects on the distribution and sig-

niture of beam-generated solitary structures. To that end, we have reproduced

Singh’s 2.5D PIC simulation of a z-bounded, x-periodic system with dynamic sys-

tem particle number with some additional modifications. Particles are injected

from above and below as prescribed by thermal reservoirs without any feedback

from the number of particles exiting the box or the density at the boundary. In

addition, a gravity force has been added. Together, these modifications permit

us to maintain a stable parallel density gradient equilibrium which persists with-
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out instability for arbitrary times. This will permit us to probe new interaction

mechanisms that relate to the presence of the gradient which is present in the

auroral system but which cannot be seen in flat, periodic simulations. Emphasis

will be placed on the formation and evolution of solitary structures and their

properties, including both initial transient behavior as well as steady-state prop-

agation. Starting with parameters similar to those used by Singh [STC85], we

will specifically study the evolution of a thin electron beam (≈ 5λDe wide) in

hopes of probing unique features of the discrete aurora [Aka74]. Our simulation

will employ considerably more particles per cell and time resolution than those

earlier works.

As a second investigation, chapter 4 will focus on Alfvén wave processes

throughout the acceleration region (near ≈ 6 RE altitude) where Alfvénic flux

from the deep magnetosphere is incident upon the top edge of the increasing

density gradient of the ionosphere. Although it is known that ionospheric col-

lisions provide an easy mechanism for Alfvénic dissipation and energy transfer,

most of the observed wave absorbtion occurs well above regions where collisions

dominate. The question of how an oblique, inertial Alfvén wave transfers energy

to ambient electrions in a collisionless manner is then one of great interest. In

our work, we will proceed with the suggestion that the strong inhomogeneity

encountered as the Alfvén waves propagate earthwards provides an environment

in which such absorption may naturally occur. We will take our dynamic parti-

cle number, gravitationally bound parallel gradient simulation from the solitary

wave investigations above and add to it a self-consistent, single-component fluc-

tuating magnetic field perpendicular to the spatial dimensions of the box and the

static magnetic field. This will permit us to launch and study electromagnetic

Alfvén waves in a bounded system related to the auroral conditions and later

permit such waves to encounter parallel density gradients and observe the nat-
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ural system responses. Our study will emphasize wave modification and reflection

results.
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Figure 1.4: Various Solitary Wave Signatures
A: [TCL82] First observed solitary structure from S3-3
B: [MET97] Large and Small fast solitary structures from POLAR
C: [ECM98a] Long train of semi-coherent fast solitary waves
D: [GON99] Two-stream instability signature
E: [MKM94] Geotail/two-stream instability comparison
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CHAPTER 2

Code Implementation

2.1 Particle Simulations: Strengths and Weaknesses

Initially, the idea of using a computer to repetitively solve the laws of New-

ton and Maxwell for a system of many particles seems to offer a perfect and

complete solution to most if not all problems of interest in physics. Not only

does the computer allow outside sources of noise, contamination, experimental

error, irreproducibility, and expense to be removed, but at every point in space

and time perfect and non-destructive measurements are possible. These perfect

experiments, in principle, threaten the very need for physical experimentation

except as occasional checks on existing computer code. However, as we shall see,

the physical limitations of our computers offer such challenges and difficulties

as to keep experimentation well safe from attack, and yet still the clean, repro-

ducible, high-detail experiments possible on a computer offer an excellent means

for bridging the often widely separated worlds of theory and experiment.

Direct computer modeling of many systems, especially those of space plas-

mas, would involve the time-integration of Newton’s second law over a staggering

number of particles. Even given the typically sparse nature of space plasma as

compared with solid matter (10 cm−3 vs. 1024 cm−3), the number of particles of

interest in most natural plasma systems commonly reaches 1014 or higher. But

to describe each particle in detail requires 8 bytes of computer memory per phase
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space dimension. Hence, for a three-dimensional simulation 1014 particles require

7.3 Petabytes ( 1015 Bytes) of fast-access RAM, a significant fraction of the data

storage ability in the United States at this time. As we currently are limited to

around 512 Megabytes ( 109 Bytes) for a single PC, we are forced to use a much

smaller number of particles than in the real system. Therefore, in our simulation,

both the mass and the charge of our simulation particles are increased, often by

factors of 1011 or more, as compared to the real consituents of the natural plasma.

In addition to memory issues, simulations are limited by finite execution

speed. Even with only one million simulation particles, we must compute the

force between each particle pair, of which there are
N(N − 1)

2
= 1012. As this

will never be feasible in the foreseeable future, we again require approximations to

reduce the scope of our problem. One introduces a spatial grid on which the elec-

tric and magnetic fields are defined. The particle phase space information is then

used to evaluate charge and current densities on the grid, Maxwell’s equations are

solved on the grid, and the fields are interpolated back to the particle positions

to compute the force acting on a particle. Each of these steps is proportional

to N , which represents a tremendous saving compared to the N2 dependence of

the number of pairs of particles. The methods used to obtain this gridded field

given the arrangement of particles and prior field information is itself a science

and will be discussed later in section 2.5.1. This method, using exact particle

velocity and position acted on by gridded field solutions, is known as Particle in

Cell (PIC) code. All of our work here involves PIC simulations.

We have eliminated the nearly infinite run-time of the direct particle-to-

particle calculation, but still we must ensure that a given run will complete in a

satisfactory length of human time. In addition to the number of particles used,

this depends on the number of steps the computer must complete in order to
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reach the desired physical time length. In general, the timestep must be chosen

to resolve the highest frequency present in the problem. In some cases, this limit

can be circumvented through the use of implicit schemes (see section 2.4).

Just as the maximum timestep is set by the resolution of the highest frequency

of interest, the smallest valid grid size for the electromagnetic fields must also

be sufficiently small to resolve spatial scales of interest. However, both of these

restrictions acting together still tend to yield runs that require months or years

to execute on even the fastest of today’s machines. Problems that have a wide

disparity of scales within them suffer especially from this effect, for the high-

frequency motion must be calculated precisely to prevent instability, and yet the

researcher may be interested in the low-frequency behavior that requires very long

runs to observe. One then resorts to additional approximations such as changing

the mass of the proton, the speed of light, or the relative ratio of any gradients

in the problem. These modified systems, while not precisely the same as those

they intend to model, appeal to the argument that a universe with a proton

to electron mass ratio of 100 instead of 1836 would likely not yield completely

different physics but instead simply renormalize the scaled parameters of the

system. Therefore, computer simulations can be seen as reduced, “squashed”

systems where all relevant scaled parameters have been moved closer together to

permit the system to fit within the constraints of our modern computing power.

Finally, even if a run is to execute well and quickly and with sufficient accuracy

to address a particular question of interest, the data must also be stored through-

out the run so that it may be examined later to extract results. A calculation of

even a simple system can easily produce truly copious amounts of data capable

of exceeding any storage medium available. Therefore, the researcher must be

selective in choosing which data is to be stored and how often it is recorded.
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Together, these concerns topple the initial, naive suggestion that simulation

could replace experiment and probe all manner of many body interactions. Yet

still is preserved a central core of proficiency within which the clarity, beauty,

and precision of computer simulation remains unparalleled. Which assumptions

are used to fold down direct simulation of nature into a manageable proposition

is a fusion of art and science. This chapter will discuss our particular choices,

rationales, and results on this issue.

2.2 Simulation Considerations for the Aurora Region

2.2.1 Why a Particle Model?

Should we wish to use a computer simulation to investigate the auroral plasma

system, we are immediately faced with the realization of the difficulties pointed

out in section 2.1. To overcome these limitations, there are two limits which we

may employ. The first is to take the 1020 or so of the natural particles in the

system and model them with a smaller number of massive particles, each repre-

senting some large-integer multiplier of the basic electrons and ions in the natural

plasma. This method is known as a “particle” or “kinetic” code, as the granular

nature of the plasma is maintained. The second, opposite limit is to reduce the

natural plasma to a continuum limit which can be modelled as flowing fluids of

electromagnetic fields and charge densities. This method is called a “fluid” code,

for the obvious reasons. As we compare these kinds of codes, we observe dramatic

advantages and disadvantages to each which are stated here without proof:

22



Particle Fluid

More memory Less memory

Long run-time Short run-time

Maintains Landau Processes Neglects Landau Processes

Maintains all possible wave modes Restricts to fluid theory waves only

Implicit test-particle diagnostics Test-particle must be added post-run

As we are interested in the kinetic electron processes and ionic heating by kinetic

particle interactions with oblique Alfvén waves, we must utilize a particle code.

It is a physically richer code, able to answer all the questions a fluid code might

as well as address the additional kinetic regime.

2.2.2 2D Coordinate System

To study a fragment of the auroral region, we choose a box orientation which

intersects the auroral oval along constant longitude. As the oval is extended

along a given latitude, we take our box to be two dimensional in space as shown

in figure 2.1. We take positive z to point from Earth’s surface outward to space,

positive x to point from the north pole towards the equator, and positive y to

point from west to east. Our box is therefore an x − z plane with y “into the

page.” For relatively small box sizes, the magnetic field of the Earth will then

appear constant and uniform in the -ẑ direction in the northern hemisphere. As

the x=0 (left side) and x=L (right side) of the box both lie open to a similar

plasma atmosphere, we define the system to be periodic in x. This is not true

along z, however, where one edge rests in the cold, dense ionosphere while the

other touches the hot, sparse magnetosphere. z is therefore said to be “bounded.”

Our selection of two spatial dimensions is motivated by a variety of factors.
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Figure 2.1: Simulation Coordinate System
Left: Simulation plane orientation with respect to the Earth. North is up, with the
equator along the lower horizontal.
Right: Simulation plane coordinates. Periodic extension in x, while z is bounded by
conditions on Φ. Particles are injected and destroyed through the borders at top and
bottom of the box.

First, we wish to observe a stream of particles and waves entering the ionosphere

from above, requiring at least one spatial dimension. Second, we wish to observe

the perpendicular scales and behavior of these waves corresponding to auroral

curtain widths, requiring two dimensions. A third and last dimension would then

proceed from east to west about the globe, traveling along an auroral curtain.

There is little structure expected in this direction, as the quiescent curtain is

generally smooth and continuous. Each addition of a dimension increases the

duration of the run by the power of the dimension. Hence, a 2D run generally

takes the square of the time required to complete a 1D run, and a 3D run takes

the cube. This is a tremendous loss of real-world time, and as we expect periodic
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behavior in the third dimension, we therefore elect to neglect it. However, we en-

counter a problem immediately in that a magnetic field may only achieve correct

2D gyroscopic particle orbits should it be perpendicular to the two dimensional

plane in which the particles are confined. In our simulation, we desire to permit

the magnetic field to run along z, a direction in the plane. To alleviate this prob-

lem, we permit the particles to have the full three dimensions in velocity space,

while we only track their positions in the two dimensions of the plane. This per-

mits an electron to orbit “out of the page” and “into the page” despite the fact

that its position only shows a linear back-and-forth motion. This behavior can

be visualized by replacing our point electrons as interacting charged rods which

can have a velocity along their length (in/out of the page). Therefore, since we

have two dimensions of position but three dimensions of velocity, we say we have

a 2.5D simulation for short. The addition of a fully three-dimensional treatment

of the problem would be truly prohibitive in cost of computer time and difficulty,

and such extension should only be done should lesser dimensional codes fail to

address the questions of interest.

2.2.3 Electrostatic PIC Code

For systems in which electrostatic oscillations dominate (i.e. electric fields are

generated through Poisson’s equation alone and are perfectly associated with

charge density oscillations), a PIC code may be specialized to electrostatic analy-

sis [Daw83]. This transformation eliminates all dynamic B-field, preserving only

external magnetic fields such as the guiding field of the earth. While these back-

ground fields may be made to change in time, such change is defined by the user,

not self-consistently with the plasma, and hence still cannot model radiation,

Alfvén waves, and other such intrinsically electromagnetic phenomena. In ex-
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change for this reduced physical description, the code required to advance such a

system is truly simple compared to that of a full electromagnetic system. Charge

densities may be gathered and processed immediately into an electrostatic poten-

tial, with all force in the system deriving from this potential field and the basic

Lorentz force �v × �B, where �B is the constant background field. Currents, while

being available for observation, do not feed back into the system to cause force

upon particles. Since there is but one force field to examine, the time-centering

of the system is particularly simple (see section 2.4). Further, the code runs very

swiftly compared to an electromagnetic code. We will utilize such a code for

our study of electron beams impacting on an ionospheric density gradient (see

chapter 3).

2.2.4 Electromagnetic PIC Codes

Should one desire to analyze the full response of the plasma including all fields

and kinetic behavior, one must then utilize a PIC code with a fully electromag-

netic engine. Such an engine must then include Ex, Ey, Ez, Bx, By, Bz in some

self-consistent manner as well as permitting them to interact with the particle

populations of the system. Such a system is highly attractive since given suffi-

cient parameters and computational ability it can reproduce virtually all plasma

behavior. However, we again pay a price. The need to resolve high-frequency

electromagnetic oscillations requires very small timestep size, mandating very

long run-times for the operator if a long-timescale phenomenon (such as ionic

physics) is to be studied. Often some field components are ignored to speed

processing time, drastically increasing the difficulty of time-centering. Hence,

though electromagnetic PIC codes are certainly the most “complete,” they also

place exhorbitant cost on the study of many problems of interest.
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As we wished to make observations of Alfvén waves in the auroral region,

we must include an electromagnetic engine of some sort. However, we do not

wish to pay the terrible price listed above. We therefore created a modified

electromagnetic code (see section 2.2.5) which retains most of the speed of the

electrostatic code while also treating Alfvénic magnetic oscillations. As suggested

above, the implications for time-centering were dire indeed.

2.2.5 Justification for the Present Codes

For our research involving the interaction of an Alfvén wave with a density gra-

dient, we must include some electromagnetic components. However, to utilize a

full electromagnetic code would be prohibitively expensive in computational time.

We therefore examine the inertial Alfvén wave in the limit of strongly oblique

angle (�k ⊥ �Bbackground) to study what precisely must be included.

First, we certainly wish to include the full electrostatic engine. Not only does

an oblique Alfvén wave require some charge density oscillation to generate the

appropriate Eperp and drive ionic currents, but the inclusion of this part of the

engine is not very difficult.

Second, as far as electromagnetic behavior, we observe that a uniform plane

Alfvén wave propagating obliquely has a strong magnetic component (roughly

E/B = vA) which, by rotating our coordinate system, can be entirely isolated

into the “out of the plane/into the plane” direction, with all remaining electric

fields within the 2D plane. This magnetic field is not swiftly varying (ω < Ωi),

and hence the field does not produce sympathetic electric fields through the dis-

placement current. However, it can rapidly vary in space (by the assumption of

obliqueness, this spatial dependence will chiefly be in the perpendicular direc-

tion), and this will produce an effective inductive electromagnetic Ez through
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Faraday’s Law. Such a field will always act to oppose the creation or strength-

ening of parallel currents. Hence we must include this parallel inductive electric

field. A standard trick is to switch to the canonical momentum �p ≡ m�v + q �A.

In our case, as we only require analysis of the parallel velocities, we only need

to introduce the canonical momentum in the z direction. Such transformation

reduces the equation of advancement to Δpz = Ez (ignoring multiplicative con-

stants). Hence, by advancing only the canonical momentum and calculating the

z velocity through the definition of canonical momentum given above, we im-

plicitly include the inductive Ez without an explicit calculation. We must now,

however, keep track of a gridded Az field which is not itself advanced in time but

is obtained from Ampere’s Law.

Third, we now have from Az a By field which may be studied for magnetic wave

oscillations, though the inclusion of this By back into the particle advancement

equations is nearly negligible, as it is always very small compared to the back-

ground magnetic field. Hence, the chief electromagnetic behavior of the Alfvén

wave is simply the inductive Eparallel which serves to reduce free-streaming par-

allel currents. We utilize this By then as an output diagnostic, and while its

contribution is included in the particle push, it has virtually no effect on particle

orbits.

The usage of the A and Φ fields to propagate electromagnetic waves without

the displacement current is known as a Darwin code [HE81] [BPL77] [KR71]. It is

useful for the examination of low-frequency waves where the displacement current

would have made only negligible contributions to the equations of motion. The

approximation is correct to O
(

v
c

)2
[Jac75]. The fact we have included only one

component of Az, restricting what sorts of Alfvén waves we may study, leads to

the more precise name of a restricted Darwin code. The assumptions implicit to
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the usage of only a single component of Az are profound and must be carefully

included in each part of the simulation code consistently. Otherwise, no Alfvénic

wave modes will be seen at all.

2.3 Exponential Gravitational Atmosphere

Crucial to our discussion of auroral interactions will be the ability to generate

static, self-consistent density gradients induced by the presence of gravity on the

plasma. We employ the 2-fluid description of the plasma to solve this system.

We start with the momentum equations,

m�̇v = −�∇P − qn�∇Φ + mn�g (2.1)

where �∇P = kBT �∇n and �g = −gẑ as usual. Let us set the acceleration to zero

in this equation for both species e (electrons) and i (ions) and apply Poisson’s

equation to relate the electron and ion densities:

∂2Φ

∂z2
= − 1

ε0
(qene + qini) (2.2)

Rewriting the density derivative as the derivative of a natural log yields the

following solution involving the characteristic exponential density variation:

ne = (−Q)noee
−γz (2.3)

ni = noie
−γz

Ez =
meg

e

M − T

T − Q

γ ≡ meg

kTe

M −Q

T − Q
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where T ≡ Ti

Te
, Q ≡ qi

qe
, M ≡ mi

me
subject to the condition Q < 0. Notice

that there is a non-zero Ez that is an integral part of the self-consistent solution,

acting to bind the electron and ion densities together, pointing spaceward (+ẑ).

There is no difference in the electron and ion densities for Q = −1, as will be the

case in all our runs.

Calculation of the required Ez field for the actual atmosphere of the Earth

results in a field of approximately Ez = 1.2μV
m

, which is insignificant compared

to the noise of the environment. In our simulation, where the effects of this field

must be stronger to contain a gradient in a small space, it can reach 1−2% of the

ambient noise level, still a small amount but required to stabilize the exponential

profile.

In order to implement this background, we add the gravitational force and the

background electric field as perturbations to the existing Poisson solutions and

particle forces each timestep as the last action. In such a way, we can still pre-

scribe any potential boundary and permit any plasma solution while maintaining

the stability of the gravity atmosphere background.

2.4 Time Advancement Algorithms

Replacing the infinitesimal differential of standard mechanics with the finite dif-

ference required by simulation algorithms raises several problems. These issues

directly affect the accuracy and relevance of the simulation results, and can lead

to artificial resonances that destroy even simple equilibrium systems. Issues such

as these are observed in any system in which a finite delay to a given response

(presumably from the continuous outside world) can lead to feedback, or as in

our case continuous theoretical treatments interact with discrete systems with
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finite, often highly limited response frequencies.

The most basic scheme to time-advance particles in an electromagnetic field

can be accomplished with the Euler relations:

�an = Force Laws

�vn = �vn−1 + �an−1Δt (2.4)

�rn = �rn−1 + �vn−1Δt

�an, �vn, and �rn are the accelerations, velocities, and positions at a given timestep

n. Δt is the size of the time step; the smaller Δt, the more accurate is the

representation of nature’s continuum. These equations, however, prove to be

unstable when applied to an oscillator problem. With each step, an error is made

due to the fact that the velocity vn in equation 2.4 uses an acceleration an−1. This

isn’t precisely the right acceleration to use. Given an interval between vn−1 and

vn, the actual acceleration should be evaluated at the midpoint between the two

velocity values (assuming we have taken Δt to be sufficiently small as to treat

our extrapolations linearly). Therefore, each step involves an error that “slips”

the particle a little higher in energy through this 1/2 timestep phase-lag between

the acceleration and velocity.

Such energy gain demonstrates itself directly, such that the total kinetic en-

ergy of a system of particles using such a scheme will be seen to spontaneously

and continuously heat itself (see figure 2.2). For the case of an electron orbiting

in a magnetic field, the circular orbit of the particle opens to become an in-

creasing spiral in both position and velocity space. Eventually, basic simulation

restrictions are violated (such as the particles hurling across the whole system in

a single timestep) causing preposterous outputs. Decreasing the timestep used in

the simulation (decreasing Δt) does increase the accuracy of the simulation, re-

ducing the growth constant of the kinetic energy exponential and yielding longer
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Figure 2.2: Euler Instability
Left: As errors from each timestep accumulate, the system’s energy is seen to increase
exponentially.
Right: Velocity space shows that the normally circular orbit of a charged particle in a
magnetic field has been transformed to an open spiral.

periods of accurate results. However, the number of total timesteps required in

the run then increases by the same amount, wasting physical run time. Further,

the inaccuracy can never be truly overcome by decreasing the timestep, simply

postponed. Therefore, the Euler method is not suitable, and we must search for

a more stable method.

A “quick fix” to the Euler relations (called Euler-Cromer [Cro81]) is to replace

one of the right-most terms in 2.4 with their most current values:

�an = Force Laws (2.5)

�vn = �vn−1 + �an−1Δt

�rn = �rn−1 + �vnΔt
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Figure 2.3: Comparative energy deviation for various implementations
Each algorithm responds to the stress of proximity to a SHO resonance differently.
Only the implicit scheme does not violate energy conservation across the resonance,
but this stability is obtained at the sacrifice of accuracy.

This has the result that for sufficiently small timesteps (ΩΔt < 2), the error in

the amplitude of the system is small and does not accumulate (figure 2.3) where

Ω is the highest natural frequency of the system. The reason for this stability is

due to an effect known as time-centering, which has been enacted in a crude way

here by our substitution. While not strictly time-centered, the above equations

can be interpreted as the rn value providing a better estimate of the actual vn to

be used than if the Euler scheme vn−1 had been used. However, it is impossible

to produce such results easily for more complex force systems in this manner.

To obtain a more generalized time-centering algorithm [Bun59], let us examine
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the 1/2 timestep phase-lag between acceleration and velocity. Take a simple

system where we track only the velocities of electrons in a uniform magnetic

field. The Euler relations would then yield:

axn = +vxn−1 ·
qeBz

me
(2.6)

azn = −vzn−1 ·
qeBz

me

vxn = +vxn−1 + axn−1Δt

vzn = +vzn−1 + azn−1Δt

Notice that the accelerations depend on the velocity of the electron. But when?

The answer is that the velocity in the acceleration equations must be a 1
2

timestep

between the known, used velocities. We may write this precisely as:

ax
n− 1

2

= +vx
n− 1

2

· qeBz

me

(2.7)

az
n− 1

2

= −vz
n− 1

2

· qeBz

me

vxn = +vxn−1 + ax
n− 1

2

Δt

vzn = +vzn−1 + az
n− 1

2

Δt

Let us then also write an approximation to permit us to solve for these fractional

values of velocity, where g represents any desired variable,

gn− 1
2

=
1

2
(gn + gn−1) (2.8)

Combining these equations with the substitution γ = Δt · Bz · qe/me = Δt · Ωe,

we find a more compact result:
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ax
n− 1

2

= +
1

2

(
vxn + vxn−1

)
· γ

Δt
(2.9)

az
n− 1

2

= −1

2

(
vzn + vzn−1

)
· γ

Δt

vxn = +vxn−1 + ax
n−1

2

Δt

vzn = +vzn−1 + az
n− 1

2

Δt

Solving for vxn and vzn, we obtain our new time-advancement equations for ve-

locity:

vxn =
vxn−1(1 − γ2

4
) + γvzn−1

1 − γ2

4

(2.10)

vzn =
vzn−1(1 − γ2

4
) − γvxn−1

1 − γ2

4

The form of these new equations, which we will now call time-centered, are

no longer easily interpretable by inspection as to the forces acting in the system.

However, when we test them as in figure 2.4, we see dramatic improvements in

energy preservation. Indeed, this system is so accurate that it can be neglected

as a source of error in our simulation, as such sources as oscillator resolution (see

figure 2.3) and finite particle per cell effects will always dominate. A system like

this which has been fully time-centered in an algebraic manner (i.e. all the terms

on the right of equations 2.6 are written in combinations to achieve 1/2 timestep

spacing from the deduced values on the left-hand side) and then successfully

inverted is said to be implicit, systems known for their extremely well-behaved

nature in terms of energy conservation. Unfortunately, although they preserve

energy, they fail to preserve precision in the particle’s phase. In this case, the

particles can be seen to slip from their correct orbital phase in the magnetic field
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Figure 2.4: Time Centering Errors
Left: The errors in the time-centered method do not propagate, resulting in only the
basic numerical noise of the imprecision of a computer’s number storage. 10−12% error
as shown here is essentially negligible in any simulation and is independent of timestep
size.
Right: Velocity space shows a well-preserved circular orbit.

along this nearly perfect circular path. This is especially true as we cross the

threshold ΩΔt > 2 and undersample the oscillator.

In order to implement these time-centered equations for our electrostatic code

application, we must do better than the above treatment. We must handle the

full Lorentz force term,

�F = q
(
�E + �v × �B

)
(2.11)

or, specialized to our 2D box configuration:

Fx = q( Ex+ vyBz − vzBy) (2.12)

Fy = q( vzBx − vxBz)
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Figure 2.5: Variable grouping for Electrostatic Leapfrog
Position and velocity-dependent variables are staggered 1/2 a timestep to prevent
Eulerian errors from building. Black variables are fundamental quantities tracked to
maximum resolution (double precision). Blue variables are determined on the grid
from the black variables listed above them. Green variables are computed strictly as
diagnostic output for physical understanding and are not fed back into the pushing
algorithm.

Fz = q( Ez+ vxBy − vyBx)

As we have written these equations, we have made no assumptions regarding the

direction of �B or �E, which can point in any direction relative to the plane of the

simulation.

As we can see, our force equation (and hence our acceleration terms) now

depend on space through �E and velocity directly through v. We must be more

careful in our derivation of our time-centering process. In order to understand

how the variables should be related to each other, it is useful to make a diagram

as in figure 2.5. Here we see that since we have dependence on gridded quantities

( �E), we can no longer as easily compute the “proper” value at a time-centered

location. Hence, we group the variables according to their dependences ( �E and
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Φ with position, since they are directly related via �E = −�∇Φ) and declare that

they shall exist 1/2 timestep separated. That we consistently treat them in this

manner permits us to avoid the Eulerian exponential error. However, since we

have assumed a constant B field, the velocities may be fully expressed in a time-

centered manner. Thus, we insert the above force equations into �F = m�a to

yield:

vx = v−
x +γ[Ex+

1
2
Bz(vy + v−

y ) − 1
2
By(vz + v−

z )]

vy = v−
y +γ[ 1

2
Bx(vz + v−

z ) − 1
2
Bz(vx + v−

x )]

Υvz = Υv−
z +γ[Ez+

1
2
By(vx + v−

x ) − 1
2
Bx(vy + v−

y )]

(2.13)

where a variable g− indicates the previous timestep’s value for g and Υ is the

aspect ratio (z/x of a unit cell). We have also let γ = q
m

Δt. We see that these

three equations are simply coupled linear equations, permitting matrix solution

to the following:

⎡
⎢⎢⎢⎢⎢⎣

vx

vy

vzΥ

⎤
⎥⎥⎥⎥⎥⎦ = (2.14)

αγ

⎡
⎢⎢⎢⎢⎢⎣

4 + γ2B2
x γ(γBxBy + 2Bz) γ(γBxBz − 2By)

γ(γBxBy − 2Bz) 4 + γ2B2
y γ(γByBz + 2Bx)

γ(γBxBz + 2By) γ(γByBz − 2Bx) 4 + γ2B2
z

⎤
⎥⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎣

Ex

Ey

Ez

⎤
⎥⎥⎥⎥⎥⎦+

α

⎡
⎢⎢⎢⎢⎢⎣

4 + γ2(2B2
x −B2) 2γ(γBxBy + 2Bz) 2γ(γBxBz − 2By)

2γ(γBxBy − 2Bz) 4 + γ2(2B2
y − B2) 2γ(γByBz + 2Bx)

2γ(γBxBz + 2By) 2γ(γByBz − 2Bx) 4 + γ2(2B2
z − B2)

⎤
⎥⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎣

v−
x

v−
y

v−
z Υ

⎤
⎥⎥⎥⎥⎥⎦

where α = 1
4+γ2B2 . Should we wish to simplify these equations for the case

of �B = Bẑ, we obtain:
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⎡
⎢⎢⎢⎢⎢⎣

vx

vy

vzΥ

⎤
⎥⎥⎥⎥⎥⎦ = αγ

⎡
⎢⎢⎢⎢⎢⎣

4 2γBz 0

−2γBz 4 0

0 0 4 + γ2B2
z

⎤
⎥⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎣

Ex

Ey

Ez

⎤
⎥⎥⎥⎥⎥⎦+

α

⎡
⎢⎢⎢⎢⎢⎣

(4 − γ2B2
z) 4γBz 0

−4γBz (4 − γ2B2
z ) 0

0 0 (4 + γ2B2
z)

⎤
⎥⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎣

v−
x

v−
y

v−
z Υ

⎤
⎥⎥⎥⎥⎥⎦

These pushing equations are the heart of what we will refer to as the “Electro-

static Code.” Comprised of a leapfrog relation between velocity-dependent vari-

ables and position-dependent variables combined with a fully implicit magnetic

orbit tracking, test runs that examine a simple thermal plasma show less than

0.1% deviation in density and energy over thousands of timesteps. Such accuracy

is dependent upon “appropriate” choice of timestep, in this case ΩeΔt = 0.1 and

Ωe/ωpe = 4.

2.5 Field Solvers

2.5.1 Poisson’s Equation

To determine the electrostatic fields, we need to solve Poisson’s Equation:

∇2Φ = − ρ

ε0
(2.15)

or in 2 dimensions,

⎡
⎣
(

∂

∂x

)2

+

(
∂

∂z

)2
⎤
⎦Φ(x, z) = −ρ(x, z)

ε0

(2.16)

We have employed two techniques to solve equation 2.16, reflecting the two
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kinds of boundary conditions we require on our system. These are fully periodic

[Daw83](for testing purposes) and partially periodic/partially bounded [Hoc66].

The first, simpler routine assumes a fully periodic system, permitting us to

take the double Fourier transform [CT65], once along x and once along z:

[
Kx

2 + Kz
2
]
Φ̃(Kx, Kz) =

ρ̃(Kx, Kz)

ε0

(2.17)

Therefore, to find Φ, we simply use:

Φ̃(Kx, Kz) =
ρ̃(Kx, Kz)

ε0

[
1

Kx
2 + Kz

2

]
(2.18)

Notice the division by K2 implicit in this method.

Our grid system in x and z has an area for an individual cell given by ΥΛ2,

given Υ is the ratio of the height to width of a cell and Λ is the x width of the cell.

Further, the grid has an extent given by nx and nz where these are the number

of cells in the x and z directions respectively. We may now utilize the following

relations for allowed Kx and Kz modes in the box. Recall that the maximum

resolvable oscillation in the Fourier transform is 1/2 of the expected result due

to the Nyquist limit:

Kx =
(
−nx

2
, ...,−2,−1, 0, 1, 2, ...,

nx

2

) [
2π

Λ · nx

]
(2.19)

Kz =
(
−nz

2
, ...,−2,−1, 0, 1, 2, ...,

nz

2

) [
2π

Υ · Λ · nz

]
(2.20)

Similarly, for the time domain, given an interval of time Δt and a total number

of timesteps nt, we have:

ω =
(
−nt

2
, ...,−2,−1, 0, 1, 2, ...,

nt

2

) [
2π

Δt · nt

]
(2.21)
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The discrete nature of the permitted �K and ω above can have dire consequences

upon the range of theory we may explore. We must ensure that frequencies and

wave numbers of interest may fit into our system with sufficient room to permit

evolution and interaction. The results of failing to do so can range from simply

not observing important physical structures to serious instabilities.

The second implementation of the potential solver involves only one dimension

being Fourier repeated, that being x, while z is clamped at the ends:

⎡
⎣−Kx

2 +

(
∂

∂z

)2
⎤
⎦ Φ̃(Kx, z) = − ρ̃(Kx, z)

ε0
(2.22)

As we have mapped our fields onto a gridded surface, our z and Kx values are

now quantized, and the derivative can be approximated as a finite difference given

sufficiently small grid size. Let us also adapt the equation to a grid comprised

of rectangularly-shaped grid cells, where Υ represents the aspect ratio (ratio of z

height to x width).

−Kx
2Φ̃(Kx, nz) +

1

Υ2Λ2

[
Φ̃(Kx, nz + 1) + Φ̃(Kx, nz − 1) − 2Φ̃(Kx, nz)

]

= − ρ̃(Kx, nz)

ε0
(2.23)

Gathering terms into scaled parameter groupings, we obtain:

−(KxΥΛ)
2
Φ̃(Kx, nz) +

[
Φ̃(Kx, nz + 1) + Φ̃(Kx, nz − 1) − 2Φ̃(Kx, nz)

]

= −Υ2Λ2

ε0

ρ̃(Kx, nz) (2.24)

For the set of variables Φ̃(Kx, nz) where nz=0, 1, 2, ... N, we can define a tridi-

agonal matrix equation which lends itself to rapid solution on the computer via
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commonly available techniques:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 c1 0 0 · · ·
a2 b2 c2 0 · · ·
0 a3 b3 c3 · · ·
...

...
...

...
. . .

· · · 0 aN−1 bN−1 cN−1

· · · 0 0 aN bN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ̃(Kx, 0)

Φ̃(Kx, 1)
...
...

Φ̃(Kx, N − 1)

Φ̃(Kx, N)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S̃(Kx, 0)

S̃(Kx, 1)
...
...

S̃(Kx, N − 1)

S̃(Kx, N)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

an = 1 (2.25)

bn = −2 − (ΥΛKx)2

cn = 1

S̃n = −(ΥΛ)2

ε0
ρ̃(Kx, n)

The parameters a, b, and c at the edges of the matrix (elements 1 and N) rep-

resent the boundary conditions we may impose upon the system. For Dirichlet

conditions (i.e. Φ=constant) on the top and bottom, we may insert

b1 = 1, c1 = a1 = 0 S̃1 = Φ̃0(Kx, 0) (2.26)

bN = 1, cN = aN = 0 S̃N = Φ̃0(Kx, N)

where Φ̃0 is an externally imposed constant. Likewise, for Neumann conditions

(i.e. Ez=constant), we may insert

a1 = 0, b1 = −1, c1 = 1 S̃1 = Ẽz0(Kx, 0) (2.27)

aN = −1, bN = +1, cN = 0 S̃N = Ẽz0(Kx, N)

This matrix is called “tridiagonal” for reasons of the topology of its elements

(three diagonal bands of non-zero value). Standard routines are available to
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invert such a matrix, solving the Φ computation [PVT96] [Pot73]. However,

again note that in such an inversion there will again be divisions by Kx and Kz.

2.5.2 Equation for Az

Having neglected the displacement current, we can write Ampere’s law for Az in

a form exactly analogous to Poisson’s equation for Φ:

⎡
⎣( ∂

∂x

)2

+

(
∂

∂z

)2
⎤
⎦Az(x, z) = −μ0jz(x, z) (2.28)

By = − ∂

∂x
Az (2.29)

The solution could thus be obtained by the same methods as discussed for Φ

in section 2.5.1. However, we must also solve Faraday’s law,

�∇× �E = −∂ �B

∂t
(2.30)

Straightforward integration of this equation in time leads to numerical instability

within the Darwin approximation [Daw83].

To obtain the self-consistent Az which provides By and the inductive part of

Ez, we employ a scheme based on the canonical momentum,

pz ≡ mvz + qAz (2.31)

Equation 2.28 rewritten in terms of particle quantities is given by:

⎡
⎣
(

∂

∂x

)2

+

(
∂

∂z

)2
⎤
⎦Az(x, z) = −μ0

∑
j

qjnjvzj (2.32)
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As we are interested in the limit of
Kx

Kz
>> 1, we may omit

∂

∂z
in the above

equation. We also expand vz in terms of the canonical momentum to yield:

∂2

∂x2
Az(x, z) = −μ0

∑
j

qj

mj
njPzj + μ0

∑
j

qj
2

mj
njAz (2.33)

We define n̄ to be the average of n(x) for a particular z and subtract it from

both sides of the equation thus:

⎛
⎝ ∂2

∂x2
− μ0

∑
j

qj
2

mj
n̄

⎞
⎠Az(x, z) = −μ0

∑
j

qj

mj
njPzj + μ0

∑
j

qj
2

mj
(nj − n̄)Az (2.34)

We see now that we cannot use the Fourier transform method to invert and

solve this equation as both nj and Az are functions of x and z, and hence trans-

formation into Kx space would involve a convolution in the last term and could

not be algebraically undone. However, an iteration method can be used. By

plugging in a “guess” in the right side for Az, we may solve this equation for Az

on the left side, then re-insert this result back into the right side and repeat the

process until Az is arbitrarily accurate. Once this concept is applied, the last

term in the above equation is no longer a convolution, as we may calculate njAz

as a known constant object for a single iteration. Thus, the steps to solve this

equation are:
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Accumulate Pzj and nj as grid arrays

Calculate n̄

Multiply last Az with nj−n̄ and add to Pzj (with constants in appropriate places)

Fourier transform resultant grid in x

Divide by Kx
2 + n̄ to undo Poisson-like relation

Fourier transform back to x space

Repeat step 3 onward until Az does not change to some arbitrary precision

This is the iterative scheme used in the Aurora electromagnetic code.

2.5.3 Limitations for Rectangular Boxes

Whether using the tridiagonal solver or the double-periodic method, calculating

Φ from Poisson’s equation invites an inherent danger. Fundamentally, to solve

Poisson’s equation involves a division by K2 values. However, it is found that

if the number of cells in the box in one direction (say x) exceeds the number of

cells along the opposite direction (say z), a strong distortion appears in Fourier

space that can completely remove all physical significance of the calculated Φ.

The source of the error stems from the inherent noise in the gridded charge

density. No matter how pure a single wavelength is loaded into a particle arrange-

ment, the finite number of particles per cell results in some amount of random

fluctuations overlaying the bulk pattern. As the number of particles per cell of

the simulation is reduced, these fluctuations become larger until they are the

dominant signal. However, even for systems where the number of particles per

cell is as large as 124 and the visible appearance of such randomized fluctuations

is very minimal, the roughly flat noise spectrum in K space can be amplified by

the Φ solving routines. In a box possessing a much extended physical size in one
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Figure 2.6: Distortion in K Space
On the left we see a loaded charge density grid with a clear excitation in the first Kx

mode and no other zeroth order modes present. On the right, we see the resulting
Φ pattern. All Kx (i.e. physically relevant) information has been swamped by the
relative amplification of the slight Kz modes present in the noise. The aspect ratio for
this arrangement was 256, and the particles per cell was only 6.

dimension than the other, much lower K values are available in the extended

direction. These low K values, when divided into the charge density, yield arti-

ficially high amplitudes for low-K modes that can swamp information along the

smaller dimension in the box. The larger the ratio of physical extent of one di-

rection to the other, and the lower the particles per cell, the greater is this effect.
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As we were interested in observing Auroral processes that require large extent

along z but confine themselves relatively narrowly along x, we discovered this

effect early on. Increasing the number of particles in the simulation, however, re-

duces the background spectrum of very low K modes, and therefore reduces this

error source. In figure 2.5.3, we see an extreme case demonstrating the maximum

distortion possible. For an aspect ratio of 8, 50 particles per cell is found to be

sufficient to avoid this problem. An aspect ratio of 2 is found to require only 15

particles per cell.

The asymmetry inherent in the tridiagonal method of phi solving permits us

to be free of this limitation in one dimension only: adding additional x cells

(periodic direction) will not distort the Φ pattern generated. However, adding

additional z cells (non-periodic) direction will destroy Kx information with the

generation of spurious Kz modes. This is unfortunately the direction of interest

in these simulations. No solution for this dilemma is proposed here; instead we

merely note its existence. Should spurious low K values be noted, the aspect

ratio should be checked against the particles per cell to rule out this particular

source of inaccuracy.

2.6 Time-Centered EM Scheme (Leapfrog)

In order to implement the new vector potential and canonical momentum terms,

we must modify the basic engine of our code. Although the force equations are not

themselves sufficiently changed as to appear radically more difficult, the process

of time-centering will be seen to be considerably more challenging. Equations

2.12 now become:
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m ∂
∂t

vx = q[ Ex+ vyBz− ( 1
m

pz − qe

m
Az)By ]

m ∂
∂t

vy = q[ ( 1
m

pz − qe

m
Az)Bx− vxBz ]

Υ ∂
∂t

pz = q[ Ez+ vxBy− vyBx ]

(2.35)

Notice that all vz terms are now in terms of the canonical momentum pzα ≡
mαvzα + qαAz. Although usage of the canonical momentum complicates the code

and makes interpreting particle z momenta difficult, the chief savings are that

in the momentum equations above, the z components remain solely acted upon

by Φ as though Az were not present. This intrinsically includes the inductive Ez

that provides an extra inertia to z currents starting and stopping in the plasma

without having to manually add it to our simulation. Let it be noted here that

the pz above is a particle quantity, with a value given for each particle in the

simulation. Later this will be accumulated into a gridded quantity known as pn

for Az calculation. It is the particle quantity that is advanced, not the gridded

accumulation. Substituting old and new variables as was performed in section

2.4, we obtain:

vx = v−
x + γ[Ex +1

2
Bz(vy + v−

y ) − 1
2m

By(pz + p−z ) + q
m

B̃yAz ]

vy = v−
y + γ[Ey −1

2
Bz(vx + v−

x ) ]

Υpz = Υp−z +m γ[Ez ]

(2.36)

where a variable g− indicates the previous timestep’s value for g. γ = q
m

Δt.

Note that we have specialized these equations such that the static, background

�B field lies only in the z direction, and the dynamic �B field must lie in the y
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direction (represented by B̃ to explicitly point out its dynamic nature). These

simplifications will be maintained for the remainder of the electromagnetic code

discussion.

We see that these three equations are simply coupled linear equations, per-

mitting matrix solution to the following:

⎡
⎢⎢⎢⎢⎢⎣

vx

vy

pzΥ

⎤
⎥⎥⎥⎥⎥⎦ = αγ

⎡
⎢⎢⎢⎢⎢⎣

4 2γBz −2B̃yγ

−2γBz 4 γ2B̃yBz

0 0 m
α

⎤
⎥⎥⎥⎥⎥⎦ ·
⎡
⎢⎢⎢⎢⎢⎣

Ex

Ey

Ez

⎤
⎥⎥⎥⎥⎥⎦

+α

⎡
⎢⎢⎢⎢⎢⎣

4 − γ2B2
z 4γBz −4 γ

m
B̃y

−4γBz 4 − γ2B2
z 2γ2

m
BzB̃y

0 0 1
α

⎤
⎥⎥⎥⎥⎥⎦ ·
⎡
⎢⎢⎢⎢⎢⎣

v−
x

v−
y

p−z

⎤
⎥⎥⎥⎥⎥⎦

+αγ q
m

B̃y

⎡
⎢⎢⎢⎢⎢⎣

4

−2γBz

0

⎤
⎥⎥⎥⎥⎥⎦Az

(2.37)

The diagram shown in figure 2.7 demonstrates the relationships and methods

of advancement for the leapfrog variables given by the above equations. It is

clearly more complicated than the electrostatic case. Recall that for a variable

to be advanced, all dependencies in its advancement equation must be a half

timestep ahead of the current known quantity. The leapfrog method contains

two tricks to permit this behavior: extrapolation of a field 1
2

timestep ahead of

its current position via a stored “past-field” array and partial-advancement of

the particles to permit them to be re-used to calculate the information required

to complete the total timestep push.
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Figure 2.7: Variable Grouping for Magnetostatic Leapfrog Algorithm
Note that position and momentum variables are placed on integer timesteps, whereas
velocity variables are on half-integer timesteps. Black variables are “fundamental,”
meaning that other quantities are calculated from them each timestep. Blue variables
are deduced from black variables and are generally those quantities of interest we output
from the simulation. Green variables are extrapolated fields temporarily generated each
timestep. Red variables are partially-advanced positions used to provide time-centered
position information for magnetic field calculation.

The complete list of tasks executed within the magnetostatic leapfrog engine

is as follows:
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PROGRAM ACTION CALCULATED INPUTTED

Accumulate Charges n x z

Calculate Electrostatics Φ Ex Ez n

Extrapolate B & Az Bye Aze By Byo

Push vx, vy, pz vx vy pz x z Aze Bye Ex Ez

Backup particles xb zb pzb vxb vyb x z pz vx vy

Push r 1
2

timestep x z x z pz vx vy Aze

Apply boundaries x z pz vz vx

Accumulate Currents pn qn x z pz Az

Restore particles x z pz vx vy xb zb pzb vxb vyb

Store Magnetic Fields Byo Azo By Az

Calculate Magnetostatics Az By pn qn

Push r 1 timestep x z x z pz vx vy Az

Apply boundaries x z pz vz vx

Inject New Particles

Repeat

2.7 Boundary Conditions

The matter of interactions with finite boundaries is an extremely critical issue for

simulations. In Aurora, we have implemented periodicity only in the x direction,

leaving the boundaries along the top and bottom of the box non-periodic and

requiring advanced treatment for both particles and fields. The field solutions

have been discussed previously in section 2.5.1. Here we will discuss the effects

upon particles and the many options that may be selected.
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2.7.1 Wrapping

The simplest form of particle boundary is that of the wrapping particle. Useful

only in periodic systems (and hence along the left and right sides of Aurora’s

box), the act of wrapping is fully encompassed by the prescription:

if (coordinate beyond allowed region)

add or subtract the box width to wrap particle back into box

else

do nothing

So long as all the fields are also periodically extended, particles feel no arti-

ficial forces as they cross the boundary, and for all intents and purposes the

boundary makes no contribution. Wrapping offers charge neutrality (net simula-

tion charge remains constant), conservation of all physical quantities, and phase

preservation.

2.7.2 Reflection

A second simple boundary condition is that of reflection. It is here that we

begin to encounter some of the subtleties inherent in non-periodic boundaries.

Technically, a reflecting boundary condition also simulates a periodic system,

save that spatial parity is perfectly opposed instead of preserved perpendicular

to the mirror surface. Initially we consider the following prescription:
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if (particle is beyond boundary)

place particle back into box by the distance traveled past the boundary

reverse its velocity component perpendicular to the surface

else

do nothing

Indeed, in an Eulerian scheme, this would suffice and work admirably. Even

in systems where the field solver is periodic, non-periodic, or both, reflection may

be applied to encapsulate the system in rigid, perfectly elastic walls.

The first subtlety is encountered when particles get too close to a region

of fixed Φ, say at the edge of a non-periodic boundary. The fact that Φ cannot

change resembles a simple model of a metal or other infinitely conductive medium,

and as such the particle sees its mirror charge and accelerates towards the bound-

ary. This rapidly destabilizes the plasma, eventually leading to dramatic numeri-

cal heating. To alleviate this, guaranteed empty cells called “boundary” cells are

established between the boundary condition point of Φ and the reflecting bound-

ary of the particles, such that a particle should never get within a few Debye

lengths of the apparent metal capacitor plate of the boundary. Such boundary

cells are required for all non-periodic systems in the directions of non-periodicity

to prevent self-acceleration of particles.

The second subtlety is less easily resolved, and for this reason reflecting bound-

ary conditions are rarely if ever used in Aurora. For those systems desiring to

remain time-centered, it is seen that the velocities required to update a particle’s

position must be 1
2

timestep separated from the values of position. Therefore, the

velocity which is reversed in the algorithm above may or may not be the correct

velocity, depending on the fraction of the particle’s last updated Δx that occurred
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before and after the boundary’s position. The result is that particles will be seen

to gain or lose energy as they interact with the boundary in a random-seeming

manner which, in the limit of large numbers, may average out; however, so will

coherent structures supported by the phase information of particle velocities. An

attempt was made to correct for this error by utilizing higher-order estimates of

the proper reflection x and v, but while these maintained phase information, they

were worse at conserving energy.

2.7.3 Absorption/Injection

The most complicated particle boundary condition implemented in Aurora is

also the most robust and useful, namely that of particle absorption and injection.

This method assumes a continuous connection with a limitless reservoir of thermal

plasma of appropriate parameters to match that which is in the box; particles are

then permitted to independently leave from and be injected into the box without

any requirements for conservation of particle number, charge, etc. This permits

us to ensure that true equilibrium conditions exist before we perturb them with

an external stimulus.

The two deceptively simple rules that govern this mode of operation are:

if (particle is beyond permitted box region)

delete particle

move last particle in list over this one (to prevent fragmentation)

else

do nothing

inject fresh particles to replace old ones (total number is not conserved)
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The rule regarding particle death is clear and straightforward. The particle’s

information is removed from the system, creating space for other particles to be

born. It is through this mechanism that flows, structures, waves, and perturba-

tions are seen to “leave” our system in a way impossible with any other particle

boundary interaction.

The rule governing particle birth, however, proves to be truly challenging.

One must first determine where the particle will enter along the boundary; this

is normally taken to be a random position, though there may be a non-uniform

probability envelope. One then must determine its three components of velocity

to be consistent with the temperature and drift specified by the user. This

requires a Maxwellian Flux Function random number generator (a complex piece

of code utilizing the Rejection Method, the details of which can be found in

appendix A.3). Things are further complicated by Aurora’s ability to select a

large number of user-definable distributions for density, temperature (3D), and

drift (3D) along any boundary. Calculation of the number of particles required per

timestep itself is an extensive calculation, followed by the actual randomization

procedures to generate these very customized distributions.

Boundary cells, just as in the reflected case, are required to prevent immediate

self-acceleration by incoming particles. It is also wise to “blur” the incoming

particle’s position such that they do not always enter precisely on the boundary

and cause an artificial charge build-up.

A beautiful capability of the Aurora program is to define additional popu-

lations (besides the basic electrons and ions of the background) which may not

initially fill the box. By proper choice of the injection distribution, one may

then model an initially stable plasma which is then subject to an incident flow of

plasma, whether a convective wash or an intense beam. This ability will be used
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Figure 2.8: Particle shapes interacting with the grid
Left figure diagrams the linear shape used by Aurora for particle size. Right figure
shows a general position of a particle in the gridded coordinate system for interpolation
purposes.

extensively in chapter 3 to project a cold electron beam into an otherwise stable

gravitational atmosphere.

2.8 Particle Size

As a PIC code inherently reduces a particle’s point-like nature to a gridded

image before calculating the resultant fields, one may think of the gridded image

of the particle as it’s “true image” to the code, or “shape function” in some

literature[Mor70]. Therefore, with respect to the fields each particle is rather a

ghost-like charge density capable of passing through others of its kind and having

no Coulombic delta function at its center.

As seen in figure 2.8, particles appear as triangular distributions given by the

equation (where x is defined as the positive definite distance from the lowest near
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integer to the current particle location and can range between 0 and 1):

f(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
d
(+2

d
x + 1), if −d

2
< x < 0

2
d
(−2

d
x + 1), if +d

2
> x > 0

0, otherwise.

Thus, if d = 1, the particle’s shape is the same size as a grid cell; other values

of d increase or decrease the particle profile’s width accordingly. Notice that

these equations have been normalized such that the total contribution of density

by the profile is always 1.

On the right of figure 2.8 we see a typical arrangement of a particle near

the boundary between two cells. Note that the centers of the grid cells are

determined to be the perfect integer, starting with 0. Thus, boundaries occur at

±1
2

from each pure integer coordinate. This choice was arbitrary, and boundaries

between cells could just as easily have been used introducing factors of 1
2

in various

formulas throughout Aurora. As the particle shape becomes relevant during grid

accumulation, the formula required for such accumulation is of interest. Given

that d < 1, a particle will always be accumulated to two grid points, one called

LEFT and one called RIGHT. In the picture above, LEFT would be the nth cell,

whereas RIGHT would be the (n+1)th cell.

LEFT (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, if 0 < x < 1
2
(1 − d)

0, if 1 > x > 1
2
(1 + d)

(1
2

+ 1
d
− 1

2d2 ) + x(−2
d

+ 2
d2 ) + x2(− 2

d2 ), if 1
2

> x > 1
2
(1 − d)

(1
2

+ 1
d

+ 1
2d2 ) + x(−2

d
− 2

d2 ) + x2(+ 2
d2 ), if 1

2
< x < 1

2
(1 + d)
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RIGHT (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 < x < 1
2
(1 − d)

1, if 1 > x > 1
2
(1 + d)

(1
2
− 1

d
+ 1

2d2 ) + x(+2
d
− 2

d2 ) + x2(+ 2
d2 ), if 1

2
> x > 1

2
(1 − d)

(1
2
− 1

d
− 1

2d2 ) + x(+2
d

+ 2
d2 ) + x2(− 2

d2 ), if 1
2

< x < 1
2
(1 + d)

Although these relations have been coded into Aurora, we have only utilized

d = 1 for our runs, resulting in the simplified relations:

LEFT (x) =

⎧⎨
⎩

1 − 2x2, if 1
2

> x > 0

2 + −4x + 2x2, if 1
2

< x < 1

RIGHT (x) =

⎧⎨
⎩

0 + 2x2, if 1
2

> x > 0

−1 + 4x − 2x2, if 1
2

< x < 1

2.9 The Heavy Particle

In an attempt to reduce the number of simulation particles to a manageable num-

ber without compromising the physical applicability of our system, we introduce

the concept of the heavy particle. These particles will represent large groups of

physical particles (electrons, ions) which will all be treated as moving together,

thereby increasing the effective mass, charge, etc. of the fundamental units of the

simulation. The relation between simulation and physical parameters is given in

terms of the weighting factor W defined by:

Np/Ns = W (2.38)

where N is the total number of particles. We shall take the convention from

here onward that variables with subscript s (xs) represent simulation variables

whereas subscript p (xp) represent real-world variables. By preserving the ratios
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of various simulation and physical parameters, we can create mappings from

simulation variables to physical variables. Applying conservation of mass, charge,

and volume, we obtain:

ms

mp
= W (2.39)

qs

qp
= W

ns

np
=

1

W

where m is the mass of a particle (say, electron), q is the particle’s charge, and

n is the particle density. Preserving β, the ratio of the thermal energy of the

plasma to the magnetic energy, and α, the ratio of the electron gyrofrequency to

the electron plasma frequency, we obtain:

Ts/Tp = W (2.40)

Bs/Bp = 1

Lastly, we must consider the electrostatic potential strength in the simulation.

We match the ratio of electrostatic energy to the thermal energy to obtain:

Φs/Φp = 1 (2.41)

Using these mappings, we observe that all plasma parameter combinations are

now invariant between the simulation system and the physical system: ωp, Ωc,

λD, ρ, α, β, vTh, λp, VA, cs, etc. Hence we have successfully constructed a reduced

system in terms of number of particles that preserves measurable plasma quan-

tities of interest. Further, we can easily map the simulation’s output values back
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to their effective counterparts in a physical system to compare with experiment

so long as we know the weighting factor W .

2.10 Normalizations

To enhance the applicability of our simulations, we utilize dimensionless parame-

ters such that the simulation may be quickly compared with theoretical results

and constraints. Thus, the user is requested to input quantities such as:

Tr ≡ Ti

Te
α ≡ Ωe

ωpe
β ≡ Uthermal

Umagnetic
M ≡ mi

me
(2.42)

To calculate basic properties of the plasma, we invert the above dimensionless

relations to obtain the physical quantities (we normally take B to be given, as

one must assume a single value to calculate all others from the simulation):

n =
1

α2

ε0B
2

me
(2.43)

T = α2β
mec

2

2kB
(2.44)

where kB is Boltzmann’s constant. It is often absorbed into T to express the

temperature in terms of energy (taken to be eV). We will include it here for ex-

plicitness. It is also convenient to have “common” or “noise” values for various

plasma parameters.
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Φtypical =
kBT

qe

=
mec

2

2qe

α2β (2.45)

λDebye =
c

Ωe

√
βα4

2
(2.46)

Etypical =
kBT

qeλDebye

=
Bc

√
β√

2
(2.47)

2.11 Parallelization

The original Aurora program was an electrostatic code written to perform on a

single Pentium II terminal. It was fast and efficient but severely limited by the

256 MB RAM and 2 GB disk space available. As we continued our investigation

towards electromagnetics, it quickly became clear that we would require much

larger particle numbers than could easily be fit within this quantity of RAM. This

forced the issue of parallelization, that is, the simultaneous, cooperative usage of

multiple computers to power a single simulation.

The issue of parallelization is a complex one, and it is necessary to investigate

the parameters of a particular code and system configuration before the method

of parallelization may be selected.

Generally, the first important consideration is that of network transmission

speed versus the speed of computer processes. Thus, we may first compute how

many nodes (for the rest of this discussion, a cooperating computer terminal will

be referred to as a node) are optimum for our simulations. For any given system,

the basic equation of interest is given by:

t =
DT N

RT
+

TP

N
(2.48)
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where t is the total run time per timestep, DT is the quantity of data (in Bytes)

required to be transmitted from one computer to another each timestep (both

ways), RT is the number of Bytes per second the network is capable of (usually

around 10-50% of its maximum rated speed), TP is the total CPU time required

for an individual timestep assuming it were to all take place on a single node,

and finally N is the number of nodes in a given configuration. As we wish to

minimize t with respect to N , we obtain:

NB =

√
RT TP

DT
(2.49)

where NB is the optimal (best) number of nodes to minimize the time t per

timestep. These values may be obtained empirically for a particular configura-

tion. For our system, we have a 100 Mbs network with a dedicated Ethernet

switch preventing traffic collisions which permits an RT of approximately 12.5

MB/s overall (notice conversion from bits to Bytes). For production runs, a typ-

ical timestep (ignoring communication issues) often requires 50 seconds of total

particle-pushing and field-solving CPU time. Finally, although this varies de-

pending upon our choice of parallelization algorithm, we require approximately

10 MB to be pushed across the network per timestep. This yields an optimum

node number of 8 computers. This number can vary based on the individual

simulation requested as well, as this will change the value of TP and sometimes

RT if less or more data is required for user storage and later analysis.

2.11.1 Spatial Decomposition vs. Particle Division

We next turn our attention to the algorithm methods available for parallelization.

These determine the scaling laws used to calculate the inputs to equation 2.49.

For PIC codes such as ours, there are basically two methods which are nearly

perfectly complimentary as regards their parameter regimes of validity.
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Figure 2.9: Particle Decomposition Network Configuration.
Each slave node retains a whole, redundant copy of the system grid. The particles are
assigned node by node. Particles are not permitted to cross nodes; they are born and
die on the same slave. The nodes communicate their component of the gridded field
solutions to the master each timestep, and the sum of their contributions is sent back.

The first algorithm to consider is called Particle Decomposition. Here, each

computer has a redundant copy of the whole grid and maintains a group of

particles that can occupy any physical location upon that grid. Which computer

a particular particle resides upon is entirely random and irrelevant to the course

of the simulation. Here, particles are never sent across the network, but gridded

fields must be sent to and from a controlling master terminal to compute the

total fields of the system and transfer these back to the particle pushing nodes

each timestep.

To adapt our formula given by equation 2.48, we take the model that the data

required to be exchanged at each timestep can be expressed as DT = agN , where

g is the size of a grid in bytes and a is the number of such grids per node that

must be exchanged. Optimizing for the best node number again, we obtain
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N = 3

√
RT TP

2ag
(2.50)

Hence we see that the equation can be expressed as a ratio between TP (the

total processing time requirements of the particle and field solvers) and 2ag
RT

(the

total time required to transmit across the network). The larger the grid, or the

less particles in the run, the worse this algorithm performs for our PIC simulation.

This ratio of times, which can also be expressed in a PIC simulation as the ratio

of number of particles to number of grid cells, is typically very large for our

simulations (4e6 particles vs. 3e4 grid cells), and thus the particle method is

attractive. However, this argument fails if the number of nodes to hold the

particles forces excessive network communication. This is the method chosen for

Aurora, since we had a limited budget of <10 computers and a high ratio of

particles to grid cells. It is also far easier to implement than its alternatives.

The second method discussed here is called Spatial or Domain Decomposition

[LD89]. In this model, we assign each node to represent a spatial piece of the grid

over which it has absolute control. It maintains the particles in that space, accu-

mulates contributions to the field solver inputs from its particles, and advances

these particles when required. Communication is required to calculate the total

fields for the system and to permit particles to cross from one spatial region to

another. This method is known for its efficiency in cases where the field solu-

tion involves only local operations and the exchange of boundary conditions for

neighboring nodes. In our code, where global solutions are used to obtain Φ and

Az, this simplification is lost and forces us to have a master-slave relation once

again. Otherwise, the addition of nodes to a non-master-oriented arrangement

can result in near perfect efficiency with no “best” node number being preferred.

To again adapt our formula 2.48, we take the model that the data required to
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Figure 2.10: Spatial Decomposition Network Configuration.
Each node is assigned a portion of the total grid, with no knowledge of the rest of the
grid. Particles present within a node’s grid are held by that node, and nodes exchange
particles each timestep as they cross boundaries. Communication is still necessary to
a central master terminal to compute the total electrostatic fields each timestep.

be exchanged at each timestep can be expressed as Dt = 2ggB +4f
nP√

g
pB , where

g is the number of grid cells, gB is the number of bytes per grid cell, nP is the

number of particles, pB is the number of bytes per particle, and f is a flux-factor

which is proportional to the mean speed of the particles in the box but typically

ranges from 0 to 1. Since this has no dependence on node number, we obtain by

simple substitution:

N =

√√√√ RTTP

2ggB + 4f nP√
g
pB

(2.51)

Notice that the ratio of grid cells to particle number in this solution is inverted

from that of equation 2.50, showing that it is optimized for precisely the opposite

regime of particle number to grid cell. In fact, given the previously cited para-

meters, we obtain a “best” N of around 10-15 computers. The relative network
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Figure 2.11: Relative comparison of parallelization algorithms.
For a given set of parameters, we see the Spatial decomposition matches or outper-
forms the Particle decomposition. For other parameters, Particle decomposition can
outperform at lower node number while Spatial wins at higher node numbers. Both
swiftly lose to the perfect parallelization limit.

communication cost of adding more computers to the network is very reduced in

this implementation compared with the hefty cost of the particle decomposition’s

total grid communication to each node every timestep.

As shown in figure 2.11, we see the comparison between these two imple-

mentations and also against the perfect case of pure 1/N efficiency. Initially,

all algorithms are nearly identical. Up until around N = 5 we observe that our

realistic algorithms are both falling behind perfect efficiency but are themselves

remaining relatively identical in performance. Beyond this point, the spatial de-

composition is clearly superior. Finally, both algorithms can no longer benefit

from assistance from additional nodes. These graphs are for a given parame-

ter range which represents a single run-type. Other parameter ranges may have
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Figure 2.12: Actual time per timestep per particle vs. node number
Notice the addition of further nodes continues to be useful given these parameters.
Others will show a minima with additional nodes causing delays due to network com-
munication bottlenecks. The last datapoint is slightly askew due to a different processor
type and speed on the 8th computer.

large regions where particle decomposition consistently wins over spatial decom-

position, or vice-versa. However, in the low-N region, particle decomposition can

rarely do worse than spatial decomposition and often does better. This combined

with the ease of implementation makes it preferable for the Aurora considerations.

In figure 2.12 we show the actual measured performance of Aurora 4.0 once

the parallelization was implemented. Notice that, for the parameters of this test

run, the addition of extra nodes continues to be of assistance.
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Figure 2.13: Empirical speed multiplier vs. node number

2.11.2 Load Balancing

Let us consider a bounded system where injection routines prepare incoming

fluxes while permitting particles to leave the system (and be destroyed). When

we extend such a system to multiple nodes, the question arises as to on which node

should new particles be born? There is no network transmission consideration,

as all particle birthing takes place on the slave’s CPU cycles, requiring only

notification from the master to begin the process. We may realize an opportunity

in this question: since the birthplace of particles won’t affect the physics of the

simulation at all, we may use it to fine-tune the performance of our parallel

computer network.

The variables determining the “optimal” number of particles processable on

a single node include memory speed and cache, bus architecture, processor speed

and cache, hard drive speed and cache, and network connection of all nodes on

the system. Instead of attempting to precompute this number, we utilize an
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empirical feedback approach.

It is a simple matter for each slave to communicate to the master precisely

how long it took to complete a full operating cycle (including network commu-

nications) as well as how many particles it had during that time. From this, we

may calculate the rate of particles per time rα for node α as follows:

rα =
Npα

Tα
(2.52)

where Npα is the number of particles in the previous run, and Tα is the total

time required for the previous run. The state we desire for our system is where

each node requires the same total time to complete a timestep, thus:

TNα =
Ncα + nα

rα
(2.53)

TN1 = TN2 = TN3 = . . . (2.54)

where TNα is the predicted time of the next timestep for node α, Ncα is the

number of particles remaining on node α for the next timestep, and nα is the

number of particles to add through load balancing injections. The condition

linking the processing time of each node yields a system of equations for the

nα’s. The system is closed by the final restriction given by the physics of the

simulation:
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n1 + n2 + n3 + . . . = nT (2.55)

where nT is the total particles to be injected (determined at each timestep by

physics alone). Combining these equations and solving for individual nα’s, we

obtain:

nα =
(

rα

rT

)
(NcT + nT ) −Ncα (2.56)

rT ≡ ∑
rα (2.57)

NcT ≡ ∑
Ncα (2.58)

The nα’s obtained via the equations above form a correct solution to adjust

the number of particles across the nodes in a single timestep in such a way as to

match their total run times based on their last timestep’s performance. However,

necessarily some nα’s will be negative, indicating that particles should actually

be removed from overfull or underperforming nodes. We do not wish to increase

the complexity of our network communications in order to permit particles to

move between nodes, so we must deal with these negative answers in another

way. An acceptable procedure is to add the total number of negative particles

found, set all negative answers to zero, then subtract the magnitude of negative

particles from those to be injected in the positive nα’s. It is necessary to perform

this subtraction to maintain particle number conservation. Therefore, for most

arrangements of particles and nodes, it is impossible to balance the node loads in

a single timestep; however, repeated application of this algorithm each timestep

yields a stabilized, balanced load across all nodes.
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CHAPTER 3

Incident Electron Beams

3.1 Introduction

Frequently, large-amplitude solitary waves with speeds far in excess of the ion

acoustic speed are observed throughout the terrestrial magnetosphere. In the

plasma sheet boundary layer[MKM94], at bow shock crossings[MKK97], in the

middle and high altitude auroral zones[MET97], and most recently by the FAST

satellite in the lower auroral region between 2000 and 4000 km[Erg98][ECM98b],

such structures are seen to be ubiquitous. FAST has demonstrated that solitary

structures are common features of the auroral downward current region, that they

are associated with quasistatic, magnetic-field-aligned electric fields of a large

amplitude, and possess a characteristic size of a few Debye lengths. Muschietti

et al [MER99] have also shown that they can be described as a traveling BGK

electron hole.

Many of the features of the solitary wave structures can be explained in terms

of the linear and nonlinear evolution of counter-streaming cold electron beam

instabilities[OMM96][MPR97][MOM98][GON99]. Typically, these studies have

involved particle-in-cell (PIC) simulations with idealized configurations which do

not incorporate any of the structure of the auroral zone plasma and in which

there is no distinction between propagation of the solitary structures parallel

as opposed to anti-parallel along the magnetic field. As a test for the Aurora
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Figure 3.1: Three Electron Beam Configurations
An exponential gradient atmosphere is exposed to a cold electron beam from above
and below. A flat, gravity-free run is considered as a control.

simulation system, we considered the case of a beam of cold electrons injected

into a static, equilibrium density gradient sustained by gravitation. This more

realistic model shows that the behavior of the electron beam-generated potential

structures is strongly affected by the density gradient.

3.2 Simulation Setup

In these simulations, we utilize the electrostatic, leapfrog version of the Aurora

code (see section 2.5.1 for details). The cold ionosphere is represented by a

gravitationally-bound plasma atmosphere in which the electron and ion densities

are perfectly matched and have an exponentially decreasing density with respect

to height as shown in figure 3.1. As discussed in section 2.3, the separation of
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Figure 3.2: Stability of equilibrium electrostatic atmosphere
Electron and Ion total particle number over a very long run.

masses that would normally result through the action of the gravitational force

on the electrons and ions is opposed by an external, static, ambipolar electric

field. The �B field is taken to be uniform and directed downward, to simulate the

northern auroral zone. Poisson’s equation is solved with the top and bottom of

the box held at Φ = 0 and with periodic conditions in x. Particles freely exit and

enter the box at the top and the bottom, simulating a giant thermal reservoir of

particles and heat unresponsive to the internal box conditions. This equilibrium

system proves to be remarkably stable even for very long run times, as shown in

figure 3.2 where the number of particles in the simulation box is shown to remain

constant within 1%. As the number of particles in the box over such a long

run depends critically on the temperature of each population (heating will drive

particles out of the box), this macroscopic thermal property of the simulation

can be used to gauge the overall stability and behavior of particle populations in

a crude fashion.

We inject a field-aligned stream of cold electrons 6Δ = 8.4λDe wide into
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Figure 3.3: Parameters for the electrostatic beam studies
Inverse frequencies in terms of timesteps, velocities in terms of background electron
thermal velocity, and distances in terms of simulation cells.

a purely ionospheric background plasma whose density variation from top to

bottom is a factor of 10. In the run labeled DOWN, the beam is injected from

the top of the box (low density, magnetospheric end), whereas in the run labeled

UP the beam emerges from the bottom (high density, ionospheric end). A control

run called FLAT was performed in a gradient-free background plasma, where

the beam density was matched to 0.1 of the uniform background density. The

simulation grid is nx × nz = 64 × 512, and the grid spacing Δ is related to the

average background Debye length by λDe = 1.14Δ (see figure 3.3). The electron

beam’s initial drift speed is 4vTe, where vTe =

√
kTe

m
is the background electron

thermal velocity. The magnetic field strength is such that
Ωe

ωpe
= 2 at z = 188,

where Ωe is the electron cyclotron frequency. The ion to electron mass ratio is
Mi

me
= 64. The ratio

Te

Ti
= 1. The time step is ωpeΔt = 0.13, and the total

number of particles is 9×106. A typical run lasts 10, 000 timesteps, though often

we will only examine 5, 000 timesteps as the system has reached equilibrium by

this point.

3.3 Dispersion Relation

As we will be examining the detailed oscillatory nature of the thin-beam setup,

it behooves us to first complete a theoretical analysis of the predicted excitation
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modes of the beam. Initially, we completed a standard one dimensional beam-

plasma interaction analysis without the weak-beam approximation as found in

textbooks [BL91]. The details of this calculation are presented in appendix E.

However, although the prediction of the appropriate K‖ given by the maximum ω

growth rate is well realized, the predicted ω itself is incorrect. The physics respon-

sible for this mismatch are due to the observed parallel wavelengths predicted by

one dimensional analysis being many times larger than the perpendicular width

of the beam channel, invalidating the 1D treatment. Finite beams in a cold,

unmagnetized plasma were first examined by Frieman et al [FGW62] with the

surprisingly complex result that the beam instabilities form a continuum of fre-

quencies. Later, these calculations were repeated in the presence of an infinite

background magnetic field with the result that a simpler system emerges with

a discrete set of normal modes [Har64]. A weak magnetic field treatment was

briefly analyzed by Elliot [Ell75], with a wave solution being found confined to

the beam channel. This same model was extended by Dungey and Strangeway

[DS76], with the additional discovery that the wave field extended deep into the

background plasma. The infinite magnetic field case was again extended to a

more realistic axial beam [GB88] with modifications to predicted wavelengths

noted. A considerable extension of past work including a Gaussian beam density

profile, strongly magnetized electrons, unmagnetized ions, and finite temperature

was performed by Serizawa and Dum [SD92], with the results that beam modes

were strongly reduced in growth rate by the finite beam width. A more modern

treatment of the problem by Reitzel and Morales [RM98] included theoretical

work accompanied by electrostatic PIC simulations of such a finite beam in both

an initial value and boundary value setup. The Buneman instability was found

to be a significant and extremely rapid mechanism for beam thermalization. Our

case contains a mixture of parameters found above: a warm background, a finite
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beam thickness, and a finite background magnetic field (1 <
Ωe

ωpe

< 3). For this

case, we turn to a simple surface mode analysis.

3.3.1 Dispersion Relation Setup

As in appendix E, we again utilize a cold, electrostatic 3-fluid theory consisting

of Poisson’s equation and the set of continuity and momentum equations for all

three species. However, we utilize a Fourier spatial transform only in the parallel

direction, leaving derivatives in x (perpendicular direction) explicit. Thus, elim-

inating all but the electrostatic potential from the above thirteen equations, we

obtain:

∂

∂x

([
1 − ω2

pb

ω̄2 − Ω2
e

− ω2
pe

ω2 − Ω2
e

− ω2
pi

ω2 − Ω2
i

]
∂Φ

∂x

)

−K2
‖

(
1 − ω2

pb

ω̄2
− ω2

pe

ω2
− ω2

pi

ω2

)
Φ = 0 (3.1)

where ω̄ ≡ ω −K‖vb (the Doppler shifted frequency). The terms on the right

constitute the standard beam-plasma interaction dispersion relation, with K de-

pendence only resulting from the ω̄ term. The terms on the left, however, include

perpendicular components which are dominated by magnetic contributions. To

solve this equation, we must create a model of the actual beam geometry to

resolve the remaining x derivatives.

3.3.2 Beam Model

We approximate our setup with a beam of infinitely thin x extent. Thus, ω2
pb

→
ω2

pb
· Width · δ(x). In addition, we wish to include some thermal effects along z,

accomplished by ω2
pe

→ ω2
pe

(
1 + 3K2

‖λ2
De

)
. Finally, we neglect the left ωpb

term,
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assuming Ω2
e >> ω̄2 and

ω2
pb

Ω2
e

<< 1 (0.04 in our setup). Together, these changes

yield:

∂

∂x

([
1 − ω2

pe

ω2 − Ω2
e

− ω2
pi

ω2 − Ω2
i

]
∂Φ

∂x

)
− K2

‖

(
1 − ω2

pe

ω2
− ω2

pi

ω2

)
Φ

= −K2
‖ω

2
pb

ω̄2
· Width · δ(x)Φ (3.2)

For x >< 0, let Φ>< = Φ0e
∓K⊥x. Inserting this into equation 3.2, we obtain:

K⊥ = K‖

√√√√ W 2 − (1 + d)(1 + 3K2)

W 2
(
1 + (1+d)(dα2−W 2)

(W 2−α2)(W 2−d2α2)

) (3.3)

where we have now switched to scaled parameters: d ≡ m

M
,α ≡ Ωe

ωpe

, W ≡ ω

ωpe

,

and K ≡ K‖vb

ωpe

.

Matching Φ>< at x=0 by integrating equation 3.2 across the delta function

yields the final dispersion relation:

4
[
−(1 + d)(3K2 + S2) + S2W 2

] [
1 +

(1 + d)(dα2 − W 2)

(W 2 − α2)(W 2 − d2α2)

]

= S2L2N
W 2K2

(K −W )4
(3.4)

with the additional scaled parameters: S ≡ vb

vTe

, L ≡ Width · ωpb

vb
, and N ≡

ω2
pb

ω2
pe

=
nb

ne
.

The graph of the ten roots of equation 3.4 can be found in figure 3.4. We have

utilized complex W and real K, as discussed in appendix E. For convenience, thin

red and green lines have been overlayed to show the 1D solution given by equation

E.1. Two branches (violet and bright green) are constrained below the lower
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Figure 3.4: Modified 2D Beam Plasma Dispersion Relation
Top is real scaled W vs. scaled K. Bottom is imaginary scaled W vs. scaled K. Thin
lines depict 1D solution, whereas thick, dotted lines show 2D beam model results.

hybrid frequency and do not approach the region of interest W ≈ 1 (figure 3.5).

One branch begins at the upper hybrid frequency and progresses to higher values
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Figure 3.5: Low-Frequency Dispersion Relation
A low-frequency close-up of figure 3.4.

of W. These three however have no complex part and therefore represent mere

resonances. The plasma wave is visible in orange but again carries no complex

part. The light blue and black modes are complex conjugates representing a

supra-beam mode. A damped and growing mode is present, but the growing

black mode has negative real K⊥, which causes the perpendicular electric fields to

grow without bound and violate the boundary conditions of the simulation. Thus,

the pale blue and black solutions will not be observed in the run. Finally, two

other complex conjugates are seen which closely resemble the 1D beam solutions;

they are depicted in darker versions of the same green and read denoting their

1D cousins. Shifted to higher W and K by the effects of the finite beam, they

demonstrate both the essential physics present in the 1D solution as well as the

considerable modifications imposed by a more realistic physical description of the

beam system. The remaining roots are merely negative conjugates of some of the

roots shown here.

In figure 3.6, we see a graph of K⊥ vs. K‖. Recall that the real component

of the perpendicular K is by definition a spatial damping term. Thus, we see
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Figure 3.6: K⊥ damping vs. K
The spatial perpendicular damping scale as a function of K. Both axis are scaled iden-

tically
kvd

ωpe
.

that after K=1.5, extremely strong spatial damping will tend to remove high K

modes.

As we will be examining systems with changing background density, it is in-

teresting to note the change in the dispersion relation 3.4 as the scaled parameter

N is altered. Figure 3.7 shows just such an investigation. In truth, however, the

change of K vs. W with respect to density alteration is more complex, as ωpe

appears in many scaled parameters as well as directly in N .

Thus, in place of the 1-D beam-plasma oscillation, a sort of surface mode

along the narrow beam is predicted; it couples the parallel motion of the standard

beam-plasma interaction with the perpendicular magnetic corrections. The main

difference between the two analyses is seen to be in the predicted growth rates.

We now turn our attention to our empirical studies.
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Figure 3.7: W vs. K for various N
The growing beam mode for various values of the parameter N, the ratio of beam
density to background density. Only actual K values permitted in the simulation are
used in this graph.

3.4 Flat Run Results

We consider the FLAT run in some detail in order to establish a baseline to which

the density gradient cases can be compared. Initially, we will investigate the
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Figure 3.8: FLAT Beam Density Channel
X-averaged particle densities taken across the beam (4Δ) plotted versus system height
for each population for three times.

large-scale system responses due to a net-negatively charged beam being injected

into the stable background plasma, followed by studies of the instabilities caused

by such a beam, the non-linear evolution of these instabilities, and finally the

characteristics and interactions of these structures.
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3.4.1 Large Scale System Response

Initially, the electron beam’s extreme charge imbalance dominates the simulation

dynamics. As seen in figure 3.8, the left panel shows that after only 26.6 plasma

times, the number density of the background electrons has dropped and that of

the ion has increased in response to the incoming beam. As time progresses in the

next two panels, we see correspondingly larger and larger depletions of electrons

as they are pushed along the field lines and out of the box in both directions.

The ions are dragged across their gyro orbits into the beam region to cancel the

still net negative charge there. This results in a partially-evacuated background

electron density cavity along the whole length of the box by ωpet ≈ 300, which

is roughly two transit times based on the beam electrons’ initial velocity. The

combined motions of background electrons and ions nearly cancel out the beam’s

injected charge into the plasma, save that the ion gyroradius (4.5 Δ in these runs)

is unable to resolve the sharp edge of the injected beam defined by the electron

gyroradius (.56 Δ), resulting in a modest negatively-charged corridor surrounded

by a positive sheath (see figure 3.9).

Despite the large-scale rearrangement of background electrons and ions, the

total number of particles in the simulation box remains constant to within 0.3%

over the length of the run. However, the arrangement of particles in the box

changes to focus around the injected beam as shown in figure 3.10.

Thus despite the repulsion of the incoming electron beam forcing background

electrons to clear the current channel, the presence of additional ions in the

channel results in an equilibrium total number density higher than the ambient

value as clearly seen in figure 3.11.
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Figure 3.9: FLAT Charge Density Profile
A snapshot of the charge density grid at the final timestep of the run. Note in the left
panel the sheath of positive ion charge surrounding the negative electron core due to
the ion gyroradius. The right panel shows that the electron vortices produce strong
charge oscillations as electrons bunch and rarefy.

3.4.2 Initial Beam Evolution

As the beam enters the plasma for the first time, there is a small group of electrons

at the tip of the beam which is accelerated due to the presence of the negatively-

charged beam approaching from behind (see “Leading Burst” in figure 3.12).

This small population rapidly accelerates from the beam’s initial speed of 4 vTe

to a final value of 6 vTe. The beam immediately following this initial leading
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Figure 3.10: FLAT Total Particle Deviation
A snapshot of the total particle density at the end of the run. The left panel shows a
cross-section across X. The right panel shows the whole density grid. Both show the
% change in density as compared with the initial setup.

burst also undergoes some acceleration; however, once these accelerated particles

reach the opposite side of the box, new particles entering the bottom see little

net charge behind or before them, reducing this effect to an initial transient.

In space, where such boundaries are not present, one would observe such self-

acceleration until the beam interacts with some other structure externally or

internally generated. Thus, near source regions where electrons are given a strong

parallel impulse leading to a net charge imbalance, these self-accelerated bursts

will be emitted from the leading edge of the beam region. Later, they will be

observed as relatively isolated fast electron bursts.

Next we observe a sparse region of beam particles directly surrounding the

injection region at the bottom of the box (figures 3.8, 3.10, and 3.11). This initial

depletion is due to the relative non-interaction of the electron beam directly

after injection, maintaining a roughly 0.10 density relative to the background.

However, near Z = 40Δ, the beam begins a complex interaction which serves

to thicken the beam and produce visible oscillations in the beam density. The

current through the dense region above Z = 40Δ and the sparse region below is
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Figure 3.11: FLAT Population Densities
A snapshot of each particle population’s number density at the end of the run. The
green indicator on the colorbar shows the mean initial ambient density.

constant as mandated by the z continuity equation.

Further, we observe in figure 3.10 that the total particle density within the

beam has increased, while the plasma density immediately outside the beam has

decreased. These results are similar to other electrostatic simulation observations

[WPD88] and are caused by the ion gyroradii being unable to resolve the sharp

electron beam edge as well as the charged nature of the beam itself.

From the beam’s phase space evolution in figure 3.12, we observe a wealth
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Figure 3.12: FLAT Beam Electron Phase Space
vz, Z phase space for the beam electrons at an early, intermediate, and very late time.

of detail and structure that was not easily visible within the density plots. The

sparse and dense regions can now be easily recognized, bounded by large, nearly

circular orbits of beam electrons. The sparse region is composed of a mostly

unperturbed thin band of cold beam electrons, while the dense region has been

considerably warmed and slowed. Between the sparse and dense areas lies a region

of strong interaction. Linear oscillations near to the injection source build steadily

into large electron vortices mainly involving beam electrons. These stack closely

together and propagate down the beam, eventually disintegrating and forming

the warm, dense region. These oscillations can be characterized by a weak beam

plasma interaction which reaches non-linear amplitudes and finally destroys its

free energy source. We will continue to explore figure 3.12 as we investigate the
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Figure 3.13: FLAT Background Electron Phase Space
vz, Z phase space for the background electrons at a late time.

details of this interaction and the eventual destruction of the vortices leaving only

a thermalized beam remaining.

The single most important evolution of the beam is seen in z/vz phase space

as the beam magically begins to turn back upon itself within the first 35 − 50

Δ (ωpet = 18 − 25). A similar, smaller (by the density ratio) motion is observed

in the background electrons, as they are both interacting via a standard beam-

plasma interaction. Due to the importance of this instability for the rest of our

discussion, we will focus our attention on the details of this interaction, and later

return to compare our theory with the box behavior.

Figure 3.13 shows the final phase space snapshot of the background electrons

can be seen. Notice that the background electrons are strong participants, ini-

tially following the same phase space paths as the beam electrons but rapidly
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Figure 3.14: Linear Regime Frequency Response
The power spectrum of Phi at point X=32, Z=30.

being smeared out into a uniform phase space distribution. It is this background

phase space mixing which is the chief mechanism of transfering beam energy to

background electron heating.

3.4.3 Linear Region Theory and Simulation Comparison

Given the empirically obtained spectral information of the electron beam in fig-

ures 3.14 and 3.15, we have W =
ω

ωpe
= 1.02± 0.01 and K =

kzvbeam

ωpe
= 1.2± 0.3

which is equivalent to kzλDe = .3 ± .1. The poor resolution of K is due to the

small number of grid cells (30) which make up the linear region. The resulting

wavelength is thus 22 ± 6 Debye lengths. Notice that the power spectrum is a

broad peak, showing strong oscillation at K = 1.8 ± 0.3 or 14 ± 5 Debye lengths
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Figure 3.15: Linear Regime Z Wavelength Response
Since the linear regime is only about 30 cells in z (42 Debye lengths), we have rather
poor resolution on the spatial spectrum.

also. Comparing with the theory shown in figure 3.4, we obtain W = 1.0 ± 0.2

for a given K = 1.2 ± 0.3, well within measurement error. As shown in the

figure (which assumes N = 0.1), the predicted peak growth rate yields a broad

peak of K ≈ 2 ± 0.1 which is in very poor agreement with the observed K. The

very short length over which linear K may be properly defined gives rise to the

high uncertainty both in the measured value as well as the theory’s inability to

accurately predict the dominant growth mode.

3.4.4 Electron Vortices

The observed beam-plasma oscillations thus transfer momentum from the elec-

tron beam to the background electron population while warming the beam parti-

cles to a temperature roughly equal to the background electrons as seen in figure

3.12. The beam’s drift speed is reduced from the injected 4 vTe to a velocity which
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can be calculated by assuming momentum equipartition between the beam and

background:

vthermalized =
nbeam (vbeam) + nback,e (vTe)

nbeam + nback,e

(3.5)

This velocity, equal to 1.3 vTe or 0.32vbeam, would terminate any further interac-

tions between the two electron species. However, as we shall see, the mechanisms

seeking to achieve this balance are violent and produce a wealth of structure.

As shown in the left panel of figure 3.12, the beam’s initial turning upon

itself is due to the presence of a build-up of electron charge which subsequent

electrons encounter. Incident electrons slow, pass through, and then accelerate.

This results in a build-up of electron charge in the region of beam slowdown as

shown in figure 3.8. This region of initial interaction remains relatively stable

and localized throughout the run. It can be interpreted as a sort of half-vortex

motion which spawns complete vortices as particles pass through. This shedding

of electron vortices decreases the amplitude of the density buildup and beam

slowdown in this region rather like a faucet dripping water.

As the modified beam-plasma interaction continues to generate resonant en-

ergy, the oscillations produced grow rapidly to the non-linear limit (within 45Δ)

wherein the electrostatic potential of the waves exceeds mev
2
Te

(the
1

2
has been

absorbed into the definition of the thermal Maxwellian). These trapped particles

appear in phase space as ovals of electron current as shown in the middle and

right panels of figure 3.12. The beam particles give energy to the trapping po-

tential structures as they decelerate on the upper edge of the vortex while taking

energy (less) from the potential structure at the bottom edge. Meanwhile, the

background electron population is only taking energy from the low-speed side

of the vortex. Once these vortices are created, they interact heavily between

the beam and background electrons, transferring energy until the beam has been
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Figure 3.16: FLAT Electric Field Pattern of Final Beam
The electric field (x & z) in the whole box at the end of the run.
Left panel (Ex): red is positive (to the right) and blue is negative (to the left).
Right panel (Ez): red is positive (upwards) and blue is negative (downwards).

thermalized and slowed, at which point they swiftly perish. The electric fields

of these structures may be seen in figure 3.16. Note the striking field reversals

just above the linear region. Also note the decaying perpendicular exponential

profiles surrounding the beam, supporting the narrow-beam analysis given in the
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Figure 3.17: FLAT Beam Electron Phase Space Close-Ups
Two snapshots of electron z/vz phase space at a mid-run timestep. The left panel
shows the initial linear oscillations of the electron density, while the right panel shows
the entrance of non-linear behavior and strong kinetic effects.

previous section. Slight wake-like behavior can even be seen in the perpendicular

background motion, suggesting a K⊥ is required for proper analysis.

A more detailed investigation of the growth of the oscillations and their even-

tual nonlinear behavior can be found in figure 3.17, where in the left panel may

be noted extremely thin, precise guiding bounds outside which there are no beam

particles but within which there is a sparse collection of electrons generally gath-
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Figure 3.18: FLAT Z Currents of Both Electron Populations
Snapshot of the electron currents in the system at the final timestep. Left panel shows
only the background electron z current, whereas the right shows only the beam electron
z current. The middle panel shows the addition of the two.

ered up near the boundaries. This is a direct result of the broad range of K

excitation predicted in figure 3.4. Notice the strong similarity to candle smoke;

this analogy is even more striking in movies of this phase space. In the right panel

of figure 3.17, we observe the increasing complexity of strong non-linearities and

kinetic effects such as particle kick-back, vortex formation, and vortex interaction.
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As can be seen in figure 3.18, the modifications made by the beam to the

background system involve little stimulated background current other than the

oscillations occuring at the bottom. The mean speed of the beam is being signif-

icantly reduced, yet the total current remains unaffected. Thus a small amount

of the beam’s current is being transfered to the background electron, but chiefly

energy is being transferred from the beam to its own thermalization. Eventu-

ally, this would damp out the current of the beam into simple heat (chiefly Tz);

however, our simulation is far too small in z height to observe this conversion

significantly.

3.4.4.1 Single Particle Trajectories

To further exemplify the complex structures a beam electron may encounter,

we examine figure 3.19. It shows the actual phase space trajectory of the first

beam electron generated, followed by examples of other particles being trapped

and escaping forward and backward, and finally a zoomed view of a thermalized

trajectory. Note that if the beam produced no interaction with the background

electrons, the beam particle crossing time would be only 1340 timesteps (178

ωpet), thus permitting 3.7 crossings for the average beam electron. Instead we

find untrapped crossing times to be 2-3 times slower than the non-interactive ideal

case. Trapped crossing times are poorly defined, as the electrons may actually

be reversed in their trajectory or held indefinitely.

Panel A: The first beam electron’s trajectory. This particle experiences the ini-

tial burst self-acceleration phenomenon wherein the electron is accelerated faster

than the beam’s initial velocity by the presence of incoming negative charge be-

hind itself (see figure 3.12, the left and middle panels). When it exits at timestep

1130, its memory location is occupied by a new beam particle. This time, it ex-
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Figure 3.19: FLAT Single e− phase space trajectories in beam
In each graph, the color of the trajectory has been coded such that the natural rainbow
color order is followed as time progresses. Thus ROYGBIV can tell you roughly how
much time is spent in an area as well as which trajectories come first. For those who
might not have access to a color version of this graph, each trajectory has been labeled
1, 2, etc. to assist identification. Trajectory 1b is reserved for a backwards-traveling
trajectory obtained from trajectory 1’s escape from thermalization.
All times are in timestep units (multiply graph value by 0.133 to obtain Δtωpe value).

periences the enormous slowdown and speedup of passing through the build-up

region before well-defined vortices have been formed. Its large deceleration and

subsequent acceleration is due to a brief interaction with a negatively-charged

embryonic vortex. The particle then continues through the system, losing energy

to existing, small vortices high in the box, and exits the box at timestep 2600.

In its third and final incarnation during the now late-time simulation, the newly
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reinitialized particle encounters a much more developed, large-scale vortex which

robs it of most of its energy, plunging it to near thermalization, though it main-

tains sufficient energy to continue in its initial direction. Notice the very noisy

signal as the particle is now heavily affected by the background noise. Finally,

the particle is swept past the vortex interaction region, and the electron jostles

its way towards the box exit quiescently. Its estimated arrival at the box exit

would have been at timestep 5380, but the simulation stops at timestep 5000.

Thus, relative to the non-interactive crossing time of 1340 timesteps, the actual

crossing time of this particle at the beginning, middle, and end of the run is 0.84,

1.1, and 2.1, respectively.

Panel B: Entering the box shortly after the initial burst period of the beam,

this particle experiences the heavy interaction of the vortex creation region, be-

coming completely decelerated to thermalization at timestep 390 for 1.3 crossing

times or 35% of the total run. During this trapping its velocity oscillates between

0.2 and -0.2 of the initial beam speed (0.8 vTe), with all of its energy having been

transfered to the vortex which it originally encountered. Finally, at timestep

2150, the particle escapes the thermal region after having been given a negative

kick by a large passing vortex. Having regained some of its initial energy from

the vortex, it continues on towards the box exit as a thermalized particle. This

is one of the most common fates for beam electrons in the simulation.

Panel C: Perhaps the most striking of the trajectory studies, this particle

was released after fully formed vortices were established in the box. In its first

incarnation, it decelerates as it approaches the negatively-charged permanent

vortex in the creation region at Z ≈ 45. Here, it passes four individual vortices,

steadily losing energy to each structure. Once a particle’s velocity is less than

0.2 of the injection velocity, it is in danger of becoming trapped in the nearly
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stationary thermalized beam particles, executing small, imperfect orbits until it

finally gains sufficient energy to pass forward or backward as a vortex moves

by. For this particle, such thermalization occurs at Z=60. The now sluggish

electron oscillates neutrally between 0.2 and -0.2 of the beam velocity (0.8 vTe).

The particle drifts upwards from Z=60 to Z=75, following the gentle bulk flow

of the thermalized beam population. However, the passing of strong vortices

slowly gives the electron repetitive kicks opposite to the beam until it achieves

a negative velocity. Its escape trajectory is marked by the continual passing of

newly created vortices until it passes into the linear regime where the amplitude

of the oscillations is smaller than the noise level. The electron returns to the

source region at ≈ 0.18 times the beam velocity (0.72 vTe). At timestep 4050

(540 tωpe, 80% of total run), the particle exits the box quite near the spatial

point it entered. The particle is then re-initialized, and this time has the good

fortune not to encounter any vortices to steal its energy until the simulation runs

out of time. Notice in this graph that the z height scale does not encompass the

whole simulation box so as to show details otherwise hidden, since this particle

never makes it to more than a fourth of the box height.

Panel D: A close-up of Panel C’s thermal trajectory. The paths which close

on top (positive vz) are drifting to the right as they oscillate, whereas those that

close at the bottom are drifting to the left. Thus we can see the average position

of the electron enter the graph, drift to the right, pause, then return to the left

after repetitive, distant interaction with strong vortices. In this way, energy is

stolen continually from the vortices as they re-energize the thermalized beam

electrons into a counter-streaming warm beam. It is this method by which most

of the vortex energy is transferred to the background electron population.

Thus by examining the phase space trajectories of single particles, much of the
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behavior of the system can be deduced. Furthermore, many larger-scale effects

also are revealed by this approach, including how the vortices themselves evolve

and interact. The best method for investigating this is a movie of phase space,

permitting us to see sequential snapshots of z/vz space and observe the particles’

and vortices’ actual motions and evolution. Here we will use sequential panes

of phase space to attempt to elucidate some of the intuition gained from such

movies during the discussion of neighboring vortex interactions (section 3.4.4.3).

Also note that electrons are not truly “trapped” in these images. Instead,

they often make a partial orbit about a passing vortex, leaving the vortex with

the same velocity direction but substantial change in magnitude. Eventually,

the particles become thermalized and relatively stable. However, the vortices

then serve to stir up this thermal population and cause it to warm by generating

drifts in the negative direction, counter to the bulk flow of the thermalized beam

population. No electrons were ever observed to travel along with a vortex for any

length of time.

3.4.4.2 Vortex Characteristics

Let us now examine some empirical results on basic vortex properties. The veloc-

ity amplitude of a well-defined vortex is seen to be 0.53± .03vbeam = 2.1±0.1vTe ,

well above the eventual thermalization velocity given in equation 3.5.

The average vortex z length is measured to be 17 ± 3λDe, with no coherent

vortices remaining above Z=250 and only partially created vortices before Z=50.

Despite some evidence that the vortices increase in size as they reach higher

altitudes, the rapid destruction of vortices higher in the box as well as the frequent

interactions between vortices leave no single vortex coherent or unperturbed any

significant distance into the box.
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Figure 3.20: FLAT Frequency of particle oscillation near vortices
A rather sharp resonance peak may be found at ω = 0.55± 0.06ωpe.

The amplitude vs. height of the vortices clearly demonstrates the strong

damping effect of proximate vortices. Before Z=20, the linear response has not

yet built up sufficient amplitude to be readily measured. Beyond this point, the

oscillations grow quickly, gaining sufficient strength to separate charge and net

particle density. By Z=75, this process comes into an equilibrium as the vortices

close upon themselves for the first time. In so doing, they also now strongly

sample their neighbors. The strongest velocity amplitudes are near the limit

of beam energy (4vTe) with mean central velocity of 3vTe. Between Z=75 and

Z=200, the vortices interact, cancel, merge, and eventually die. The electrostatic

potential signature fades, leaving a thermalized beam, a warmed background,

and counter-streaming jets of particles in both the background and the beam.
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As no beam particles have been observed to become trapped in the vortices,

instead passing by while decelerating or being completely thermalized in one pass,

it is difficult to obtain a direct measurement of the bounce frequency. However,

selection of a beam electron which completes an orbit around the vortex without

significant energy loss should sample the frequency well. As shown in figure 3.20,

we observe such a particle resonating at ω = 0.55±0.06ωpe. The bounce frequency

is given by theory to be:

ωbounce
2 =

qk2Φ

m
(3.6)

where k is the associated wave number of the oscillations, m is the mass of

particles involved, and Φ is the amplitude of the oscillation’s peak potential.

Using k = 0.3 ± 0.1λDe from figure 3.15,
q

m
of an electron, and Φmax = 3.0

mTe

q
,

we obtain a predicted value of 0.5± 0.2ωpe, well in agreement with the measured

value above.

3.4.4.3 Vortex Interactions and Damping

In this run, we observe that the electron vortices perish swiftly as they move up

the box. Their electrostatic potential signature is virtually eliminated beyond

Z=200. We now examine the Z phase space of the beam particles to identify the

mechanism by which they are being so strongly damped.

Let us examine figure 3.21. We see a series of time-advanced panels of electron

beam phase space. Close examination reveals two modes of damping for the

vortices: interaction with other vortices, and depletion of the free energy source.

In the case of vortex interaction, we examine the twin vortices shown between

the green border lines. Initially, we see they are as separated as any vortex may
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Figure 3.21: FLAT Vortex Merger
Z/VzPhase space snapshots at various near times. The green lines define the upper and
lower bound of the interacting vortices through time. The inner edges of each vortex
are also drawn for clarification.

initially be in this run (since the non-linear creation process forces them to share

a separatrix point). However, as time progresses, the wave fields of each vortex

begin to influence their neighbors. The bottom vortex is seen to be highly dis-

rupted, pulled by the upper into an orbit that folds the circular particle orbits into

opposite-flowing layers pressed close together (compressed shear layers). These

high-shear phase surfaces generate weak, mixed potential signatures instead of

vortex-supporting sinusoidal oscillations, thus being incapable of maintaining ei-

ther one of the interacting vortices. Since the vortices in this run are always near

each other, they interact heavily with rapid destruction the result.

In the case of depleting the vortices’ free energy source, we first examine the

source region. Vortices are created by the interaction of the beam’s free energy

with the background electrons. As long as this energy source remains present,

the vortices will continue to be robust and will maintain their saturation am-
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plitude regardless of interaction between them. The vortices take energy by the

constant, rapid deceleration of beam electrons. Should the beam’s energy be

removed from the system (as it is near the top of the box, where most of the

beam has been thermalized), vortices may also continue to propagate so long as

they have enough stored energy to well-define their oscillation amidst the back-

ground of thermalized populations (i.e. sufficient energy to lift the thermalized

population into an orbit). Naturally, this slowly translates the vortex energy into

the thermalized populations to create the warm forward and backward beams

noted in the previous section, but the vortices should be noticeable for some time

despite this gentle damping. Instead, in this run, we observe that any vortex

which survives the interaction region such that all its immediate neighbors have

been destroyed or merged has a tiny amplitude remaining, sufficient only to lift a

few particles into orbit to continue its propagation. This energy is rapidly lost to

the thermalized background, and the vortices’ field energy falls below the noise

threshold of the simulation. Without the free energy of the beam high in the box

to renew themselves, the vortices perish.

Thus, in either case, either through direct destruction through merger or by

weakening through interaction followed by isolation from the beam source, the

vortices all perish. As shown in figures 3.12 and 3.9, no vortices are observed to

leave the box.

3.5 Up Run Results

The UP run reproduces what a space-ward flowing electron beam encounters as

it proceeds into the rarefied upper ionosphere and lower magnetosphere. This

examination is useful for modeling the downward-flowing current regions that

surround the primary upward current channel. Our discussion will focus on effects
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Figure 3.22: Relative Parameters for UP Case
The magnetization (upper), plasma frequency (middle), and electron density of the
background (lower) all relative to the FLAT case.

which are significantly different than the FLAT case of the previous section. Note

the new plasma parameters relative to the FLAT case due to the presence of a

density gradient in figure 3.22.

3.5.1 Large Scale System Response

The electron cavity / ion enhancement seen in the FLAT case forms as expected.

However, due to the significant density within the beam compared to the sparse

top of the box, the displacement caused by the beam charge produces a larger

fractional change in background density until the beam density is the dominant

density in the region (see figure 3.23). We also see as in the FLAT case that

the overall system charge remains zero to within 0.5% of the background density

despite this vigorous rearrangement of the system by a strong beam. However,

unlike the FLAT case, a strong net negative charge remains in the electron beam

channel. This is due to the rapid rarefaction of background ions and electrons

which, despite their attempts to neutralize the beam, are being pulled back by
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Figure 3.23: UP Beam Density Channel
X-averaged particle densities taken across the beam (4 Δ) plotted versus system height
for each population.

gravity leaving the top of the beam exposed. The beam is still rendered neutral

by ion and background electron rearrangement, but now such shielding extends

out a quarter of the box on either side of the beam (figure 3.24).

Despite the large-scale rearrangement of background electrons versus ions,

the total number of particles in the simulation box is seen to remain constant

to within 0.4% over the length of the run. However, as seen in figure 3.25, the
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Figure 3.24: UP Charge Density Profile
A snapshot of the charge density grid at the final timestep of the run.

momentum of the beam drags along mass from the dense atmosphere, producing

an increase in the upper region density of over a factor of 2. Meanwhile, the sheath

around the beam is evacuated of electrons by repulsion while ions are absorbed

into the beam region by attraction, leaving an approximately 30% reduction in

total density outside the beam near the top of the box.
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Figure 3.25: UP Total Particle Deviation
This graph portrays the total particle density rearrangement due to the presence of the
beam.

Figure 3.26: UP Beam Electron Phase Space
Vz / Z phase space for the beam electrons at an early, intermediate, and very late time.
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Figure 3.27: UP Electric Field Pattern of Final Beam
Left panel: red is positive (to the right) and blue is negative (to the left).
Right panel: red is positive (upwards) and blue is negative (downwards).

3.5.2 Electron Vortices

As we begin to study the effects of the gradient atmosphere on the vortices, we are

struck by the dramatic difference between the FLAT and UP cases. As shown in

figure 3.26 (as compared with figure 3.12 from the FLAT case), the UP electron z
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Figure 3.28: UP Z Currents of Both Electron Populations
The left and right panels show the background jz and the beam jz respectively. The
central panel shows the addition of the previous two. Note the background electrons
are swept up by the beam vortices and pulled from the high to low density region.

phase space shows a dramatic persistence of electron vortices throughout the run,

including the very top of the simulation. The damping rate of the electron vortices

has clearly been reduced, permitting them to persist and propagate well beyond

the simulation boundaries. Moreover, we observe that the spacing between the
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vortices appears to be much more haphazard, with some vortices pressed tightly

together while others appear relatively isolated. These observations are supported

by the electric field structure as shown in figure 3.27, where strong perturbations

in the Ez field show the presence of positively-charged vortices propagating along

the beam. The large, omnipresent, bipolar Ex field along all z is simply due to

the strong negative charge of the beam.

As the vortices propagate into weaker and weaker background density, their Φ

amplitude grows with respect to the background charge density available. Soon,

the background is strongly participating in the vortex oscillations as can clearly

be seen in figure 3.28, where upward-moving background electrons can be seen via

their jz signature only where vortices are present within the beam. Some large

vortices nearly halt the beam’s current, having transfered much of the drift of

the beam to the participating background population as well as jets of previously

thermalized particles as extensively investigated in section 3.4.4.1.

Figure 3.29 shows the final phase space snapshot of the background electrons.

Again we observe that the background electrons are strong participants. Here,

however, the phase-mixing occurs much more slowly, only completing near the top

of the box. Even then, some regions of rarefaction remain at the centers of vortex

oscillation. Further, the initial, clean orbits of the oscillating beam particles

carve out evacuated regions in phase space where the two populations appear

immiscible. Eventually, these clear boundaries between beam and background

are violated and blurred as the phase mixing process continues.

3.5.3 Vortex Interactions

The differences between this UP case and the previous FLAT run are clearly

apparent in figure 3.30. Not only do the vortices exit the box in complex, strongly
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Figure 3.29: UP Background Electron Phase Space
vz, Z phase space for the background electrons at a late time.

coherent structures, but they do so in a bursty manner, having restructured the

beam from its initial perfect periodicity. The following observations become clear

when a movie of the results are viewed. Although the graphs provided show the

essential events, the intuition gained by observing movies cannot be replaced by

still images.

First, let us direct our attention to the three colored vortices in the left-most

panel of figure 3.30. They have preserved to a great degree the initial periodic-

ity of their birth conditions, though they have widened and begun to phase mix

through subtle interactions with each other and the background plasma’s noise

spectrum. Note that the orange vortex (middle) is larger (higher amplitude,

faster electron flow) than the violet (top) vortex, and the green (lower) vortex is
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Figure 3.30: UP Vortex Merger, Rarefaction, and Bypass
Seven z phase space snapshots at various near times. Referenced vortices have been
colored pale blue, orange, violet, and green. Large purple arrows indicate phase space
gaps as they are created and evolve.
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approximately the same amplitude as the orange. Surprisingly, the orange and

green vortices overtake and attempt to pass the smaller violet vortex. In fact,

this process nearly completes, permitting the orange and green to continue prop-

agating beyond the violet vortex, until the whole structure encounters another

perishing structure. Note the pale blue vortex enters the figure as a vortex be-

ing overtaken and passed by two other merging, faster vortices. By the second

and third panels, the small pale blue vortex has been completely passed and has

been reduced to the background electron thermal velocity. Without the energy

to continue propagating upwards at high speed, it is swiftly overtaken yet again

by the triple-color vortex complex described above. Note in the last panel the

pale blue vortex has been forced to zero propagation speed. Unfortunately at this

time the whole structure leaves the simulation box. These kinds of events occur

continuously in the UP simulation: larger vortices overtake smaller vortices, at-

tempting to pass them but often instead merely merging with them. Discarded

vortices with greatly reduced propagation speeds encounter passing vortex after

passing vortex until they slow and eventually reach zero or even negative net

speed. Observe the increased complexity of the structure leaving the top of the

box: four separate vortices, each one capable of being ejected at any moment

behind the whole conglomerate structure.

A careful observation of the slow or even counter-propagating vortices shows

that they are eventually destroyed by the large fields of passing vortices causing

strong phase mixing, but not before many tens of vortices pass them by. These

slow vortices, in turn, provide the gentle agitation to passing vortices to encourage

them to develop anisotropy leading to speed alterations and eventual merger.

It was seen in the FLAT case (figure 3.21) that mergers did take place without

a gradient, but only after the vortices had become greatly weakened through
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energy loss to the background. It was also found to be based on the strong,

unfaltering periodicity of the vortex creation and propagation, guaranteeing each

vortex had two separatrix-sharing neighbors. In the UP case, however, mergers

are seen to take place nearly instantaneously after creation, with some vortices

merging quickly into another, single stable vortex, while others are spared of any

such interaction. As the merging necessarily draws two vortices together to form

a structure smaller in z size than the sum of the original two vortices, merging

has a strong tendency in this run to rarefy the number and spacing of vortices

along the beam. Whereas the density of vortices stayed relatively constant in the

FLAT case, here there is a definite tendency for mergers to create and elongate

gaps between vortex structures. Such gaps are noted in figure 3.30 by large

purple arrows. Notice that for every gap, an onging or recently passed merger

event may be found nearby. These gaps generally persist and widen, but such

measurements of gap widening can become difficult when another vortex passes

through the region. Such passing vortices can either be fast vortices on the right

in phase space or a slow vortex on the left (as shown above with the small, pale

blue vortex).

The surprising amount of vortex interaction in this case as compared to the

FLAT run is not due simply to the continued persistence of the vortices through-

out the run but also to a strong correlation between height and propagation speed

of the vortices. Effectively, an acceleration is observed which pulls vortices back

towards the higher-density at the bottom of the box. Recall the gravity force is

only felt by the background population, not by the beam population. As this

acceleration serves to compress the stream of upward-moving vortices, interac-

tions and mergers at a high rate are inevitable. We will investigate this strange

denseward acceleration more completely in section 3.7.
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3.6 Down Run Results

The DOWN run models an earthward flowing electron beam encountering an in-

creasingly dense background such as at the magnetospheric/ionospheric bound-

ary. This well models the initial burst of fast electrons which streams earthwards

after a stimulation event occurs in the magnetotail region. Our discussion will

focus on effects which are significantly different than the FLAT case. We utilize

the same box setup as the UP run with the exception of the direction of beam

injection.

3.6.1 Large Scale System Response

As shown in figures 3.31 and 3.32, the electron cavity / ion enhancement seen in

the FLAT case forms as expected. Due to the equal relative density of beam to

background electrons, the alteration of the sparse region of the box is dramatic,

with the cold, fast beam electrons expelling nearly all of the background electrons

in the beam’s path immediately. We also see as in the FLAT case that the overall

system charge remains zero to within 0.5% of the background density despite this

vigorous rearrangement of the system by a very strong beam. Similar to the UP

case, a strong net negative charge remains in the electron beam channel; however,

the extended sheath surrounding this region in the UP case fails to form, with

the background electrons being expelled to form a much sharper positive charge

sheath canceling the effect of the beam. Also noted is the increased density of

the beam electrons near the bottom of the box (figure 3.34); a unique feature of

the DOWN case, the beam electrons seem to be having difficulty exiting the box

in an expedient manner. This is the first indication of an important effect in the

DOWN case where the electron beam is unable to clear and dominate its channel

of travel. This feature will be discussed more in the next section.
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Figure 3.31: DOWN Beam Density Channel
X-averaged particle densities taken across the beam (4 Δ) plotted versus system height
for each population.

Despite the large-scale rearrangement of background electrons versus ions,

the total number of particles in the simulation box is seen to remain constant to

within 0.7% over the length of the run. However, as seen in figure 3.33, a region

centered at Z=400 cells shows a strong density depression surrounding the beam,

as the ions of the neighboring background have been drawn into the beam, and

the background electrons have been repulsed by the beam sufficiently to bring a

net positive charge to the region near the beam. This depleted region surrounding

the beam continues down towards Z=0 in the box, though it becomes difficult to
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Figure 3.32: DOWN Charge Density Profile
A snapshot of the charge density grid at the final timestep of the run.

see due to the relative percentage change of the beam density being divided by an

ever-increasing background density. In figure 3.34, we clearly see the evacuation

of ions from the region surrounding the beam as they are drawn into the beam,

while a deeper depletion of electrons in the region still yields the net positive

charge density sheath to cancel the charge of the beam.
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Figure 3.33: DOWN Total Particle Deviation
This graph portrays the total particle density rearrangement due to the presence of the
beam.

3.6.2 Electron Vortices

The injection of the cold electron beam down into the deepening density produces

radically different results than observed in either the FLAT or UP cases as shown

in figure 3.35. First, the size of the vortices has increased from a mean size of

16 λDe to 30 λDe. Second, these enormous vortices are spaced distantly from

each other and show few signs of merger, as reinforced by figure 3.36. Third,

tiny vortices are seen to spontaneously appear along the beam which have no

relationship with the initial birth region of the larger vortices which were present

in every other run. These small secondary vortices engage in typical passing and

merging interactions with the larger, faster vortices. Finally, the large vortices,

though clearly persisting in some form to the bottom of the box, appear to leave

in very damaged condition as blobs of very fast particles well in excess of the

beam injection speed. Each of these observations is discussed in more detail

below.

The large size of the vortices is supported by our dispersion theory discussed

in section 3.3, where taking
nbeam

nbackground
= 1.0 yields a predicted decrease in size by
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Figure 3.34: DOWN Population Densities
Graph of the particle density grids for background electrons (left), background ions
(middle), and beam electrons (right).

one quarter. However, background plasma density change also causes the λDe to

increase by approximately
√

8, thus multiplying the results of the UP and FLAT

cases by 2.3. This is seen to compare favorably with the observed multiplication

in size of 1.9.

As these large vortices propagate deeper into the density gradient, their Φ am-

plitude falls as the background density increases and absorbs more of the available

field energy. Soon, the background density is so high that the vortex oscillation
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Figure 3.35: DOWN Beam Electron Phase Space
Vz / Z phase space for the beam electrons at an early, intermediate, and very late time.

fields are shorted out by the abundance of background electrons. Each vortex

structure is reduced to a tangled burst of high-energy electrons far beyond the

background thermal speed (see bottom of figure 3.35). Such intense background

interactions can clearly be seen in figure 3.37, where complicated jz structures are

formed in the background electrons surrounding each vortex. Note that a mode

2 oscillation (2 peaks) has formed perpendicular to the field in the background

electron jz.

Unique to the DOWN run is the spontaneous creation of small vortices (which

we call “secondary” vortices) along the initial burst beam and then continuously
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Figure 3.36: DOWN Electric Field Pattern of Final Beam
Left panel: red is positive (to the right) and blue is negative (to the left).
Right panel: red is positive (upwards) and blue is negative (downwards).

throughout the run in regions well between the larger vortices. Satisfying the

dispersion relation 3.4, the vortices possess a mean K of 1.4. This value was

obtained for the secondary vortex visible in figure 3.35 at Z=240 with some ad-

ditional timesteps passed to permit the vortex to fully form. At such a position,
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Figure 3.37: DOWN Z Currents of Both Electron Populations
The left and right panels show the background jz and the beam jz respectively. The
central panel shows the addition of the previous two.

the beam had a speed of approximately 3vTe, and the parameter N was approx-

imately 0.3. These smaller vortices form from a purely absolute instability (as

opposed to the convective birth of the larger vortices) and play little role in the

beam’s behavior or evolution compared to the passage of the giant vortices. What

the secondary vortices do provide is a fascinating way to explore the interaction
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Figure 3.38: DOWN Background Electron Phase Space
vz, Z phase space for the background electrons at a late time.

of vortices of dissimilar size. It is clear that these vortices would evolve in any

run at any time, save that both the FLAT and UP runs have such density of

convective vortices along with the accompanying mergers and passing that the

beam is quickly rendered thermalized, stealing the free energy source of such

small vortices. This is in addition to the wave fields of the convective vortices

disrupting the growth and formation of the secondary vortices as they pass.

In figure 3.38, the final phase space snapshot of the background electrons can

be seen. Here, the background electrons are seen to be so strongly participant as

to dominate the beam electrons. The small-scale and large-scale vortices are both

clearly visible. The same strong phase-mixing of trapped background particles

can be seen as well as the broad tendency to accelerate these trapped particles
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Figure 3.39: DOWN Vortex Acceleration, Rarefaction, and Passing
Ten z phase space snapshots at various near times. Referenced vortices have been
colored pale blue, orange, violet, dark green, and light green.

entirely out of the background reservoir.

3.6.3 Vortex Interactions

As in the UP case, the differences between the FLAT case and this DOWN run

are particularly apparent in the z phase space diagrams shown in figure 3.39.
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First, we shall address the distinction between the major or convective vortices

generated at the top of the box and the secondary or absolute vortices generated

spontaneously along the beam throughout the run. The large, pale-blue and

violet vortices, with their large size and clear birth during the initial beam-

plasma interaction at the top of the box are of the convective variety. These

vortices travel at approximately 2 vTe with high-speed flows near their centers of

up to 6 and -2 vTe. They are the equivalents of the vortices we have studied in

the previous two cases (UP and FLAT). Next we observe those vortices colored

light green and orange. Spontaneously arising from the beam well beyond the

initial birth region, their smaller size is due both to the relative weakness of the

beam density as compared with the increasing background density as well as the

slower beam speed from which they draw their energy. These smaller vortices are

said to be secondary or absolute, since they do not arise from the interaction of

the beam and background electrons near the boundary but instead somewhere

deeper in the run. The mean secondary vortex speed is approximately 1.5 vTe,

with flow speeds within reaching between 2.5 and 0 vTe.

The distance between consecutive convective vortices increases dramatically

as a function of time. This behavior seems to be caused by the same accelerat-

ing force as was observed in the UP case; however, in this run the acceleration

increases the speed of the vortices instead of slowing them. Hence, the opposite

result becomes true: in the UP case, the acceleration tended to clump and force

interactions between vortices, whereas in this DOWN case the acceleration almost

completely prevents interaction between neighbors. Were it only for the presence

of the convective vortices, this would be nearly all of the observation. However,

the presence of the smaller vortices permits there to be “bumps” along the path

of the convective vortices. This not only increases the structure of the beam, but

permits us to observe the interactions of dissimilar vortices. Such a comparison

125



was not possible in the UP or FLAT runs, as all vortices were generated in the

same region by the same mechanism and hence had nearly identical parameters.

As the initial pale blue and violet convective vortices progress, the orange

and light green absolute vortices grow and become well-defined. Finally, in the

third-from-the-left panel in figure 3.39, the smaller and slower orange vortex is

simply carried along the slow-current side of the convective vortex. (Recall that

these graphs display negative velocity for the down-flowing electrons.) In an

unprecedented event, both the orange and the green secondary vortices make

the transition through the major vortex without significant disruption, only to

continue towards a second passing event with all signs that they will again pass

without significant decay. This shows a tendency for dissimilar vortices not to

strongly interact. This property further explains the FLAT case’s inability to

preserve vortices: they were simply too similar to survive near each other. Thus,

near the end of the box, we expect to observe infrequent bursts of strong vortices

followed by smaller, more regular signals of smaller-scale vortices. The amplitude

and size of the convective vortices is also expected to appear to oscillate in an

unpredictable fashion as each large vortex may or may not be passing zero, one,

or even two secondary vortices at any given time. In the middle of the box, these

expectations are born out.

Lastly, there is a surprising sort of fractal nature observed in this run. As indi-

cated in figure 3.39 with purple arrows, minor “beams” or “fingers” of electrons

are spontaneously created from the presence of vortices. Commonly observed

leading the large, pale-blue vortex reaching towards higher speeds, they are also

seen to be small, regularly spaced fingers between major vortices pointing to-

wards zero velocity. As the secondary vortices approach and pass the major

vortices, these fingers gain energy from the secondary vortex fields, sometimes
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gaining enough to promote two or three fingers of energetic particles leading large

vortices. Moreover, when the secondary vortices encounter the regularly-spaced

fingers occupying space between major vortices, the secondary vortex fields slow

(and hence elongate) these fingers. The initial return beam resembles a sort of

finger, later enhanced with other fingers flung off by forming vortices. These

finger-like projections are similar to those observed by Pritchett and Winglee

[WP87] [PW87]. To increase the fractal nature, we then observe that such beams

as these fingers may give birth to new, very small vortices (called “micro” vor-

tices here). One such micro vortex is observed in the figure, persisting near zero

velocity throughout the plot. It has been colored dark green and resides in the

upper-right corners of the last three panels. Other microvortices can be observed

in the same region as the dark green example, as well as one which forms be-

tween the orange and light green secondary vortices in the last panel. Hence,

through the injection of a beam into the plasma, we obtain large and small vor-

tices. Through their interaction and propagation we generate other beams (some

counter to the original beam itself), which in turn give rise to smaller vortices.

Such behavior was impossible in the UP and FLAT run due to the continual

interaction and destruction of vortices and the rapid thermalization of the beam.

As shown in figure 3.39, we see the large, pale-blue vortex has been accelerated

almost entirely above the initial beam energy with obvious damage to its proper

phase space configuration. By the time it leaves the box, we observe it as a burst

of highly energetic particles at up to twice the injected beam speed, but much of

its initial size and structure has been degraded severely. Further, the passage of a

degraded large vortex is seen to be far more damaging to secondary vortices than

an initial, well-formed oscillation, as leading and trailing fingers drape over and

complicate or destroy the secondary vortices. Hence, the Φ spectrum leaving the

box has noisy bursts of very high-energy particles combined with a nearly contin-
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uous noisy background of damaged secondary vortices and thermalized particles,

as well as both high and low energy fingers complicating the signal.

Thus, despite the fascinating structures of the UP case and their relative ro-

bustness upon leaving the simulation, the DOWN case yields even more dramatic

and striking structure and interplay while yielding somewhat unstructured bursts

leaving the simulation.

3.7 Run Comparisons

We now focus our attention on the comparison of these three runs with the hope

of identifying both ubiquitous behavior and unique responses present in the three

runs. We will attempt to identify the prominent physics in each case and sketch

the conditions where these processes dominate.

3.7.1 Charge and Particle Density

All three runs show a clear and robust pattern involving the injection of the

net charge of the electron beam. Along the field lines, background electrons are

expelled from the system wherever they overlap the beam electrons. However,

simultaneously, ions are drawn across the field lines into the beam channel to

help neutralize the net charge of the beam. This results in an enhanced total

plasma density in the beam channel, surrounded on both sides by a density cav-

ity. The ions then match this density to prevent charge imbalance, resulting in

the increased total number density. The total cancelation of the beam’s charge

as well as the overall simulation charge is guaranteed to reach neutrality within

0.7% instantaneously at every step of the run after the beam equilibrium has

been formed. However, the local beam charge tends to remain partially negative,
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with such charge gathering along the edges of the beam. The surrounding plasma

is correspondingly charge-positive in a sheath region whose size is inversely pro-

portional to the density of background ions available. This effect cannot be made

to vanish, for the greater than one ratio of electron cyclotron frequency to ion

cyclotron frequency prevents the ions from forming precise edges to the beam,

thus surrounding it with a strong positive charge over one ion gyroradius. This

effect is in addition to the previously noted sheath dependent on the background

density of ions. Thus, the edges of the beam are seen to remain the most neg-

ative, with the middle of the beam being generally neutral with some negative

charge, and the plasma beyond the beam having a strong region of positive charge

density rapidly fading back to neutrality.

The beam electron density behavior is remarkably consistent regardless of

beam injection direction or even presence of the gradient. In figures 3.8, 3.23,

and 3.31, we see that beyond the injection regions, the sparse top region of the

simulation is also filled with the sparsest regions of beam electron density. The

bottom, dense section of the simulation is sensibly home to the densest portions

of the beam. In all cases, this beam density difference was a factor of between

1.5 and 2, with the ratio always taken to be densest to sparsest. We identify two

arguments as to the cause of this selective densification, both utilizing beam ther-

malization through vortex generation as the mechanism: increased background

density, and intensity of vortex destruction. As the background density increases

beneath the traveling beam, any vortices present in its stream have more access

to background particles to which they transfer energy and slow the beam, thus

increasing its density. This suggests that the region of increased beam density

should always correspond directly to the background density, which is very close

to what is observed. However, a second argument suggests that as vortices in the

beam interact and destroy each other, the beam is highly thermalized and hence
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slowed, with the same effect on beam density. This argument suggests that the

beam density should be highest where vortices are being created and destroyed,

which corresponds to the beam injection region. Examining the three figures

mentioned above, we see that for the FLAT case (without any gradient), the en-

hanced beam density is present directly in the region where vortices are made and

destroyed. Since the vortices are all of the same scale, they quickly interact and

dissipate, leaving a slower beam. In the UP case, identical to the FLAT case near

the bottom of the simulation, we observe an even stronger effect of beam density

gathering. The two arguments presented above should be working in tandem,

with the region of most intense vortex creation and destruction overlapping the

denser background regions. Thus the UP case seems to bear out our prediction.

Finally, in the DOWN case, we observe a modest increase in density near the

beam source, with only a very gentle, smooth increase in density as the bottom

of the simulation is neared. As the DOWN case has very few vortex interactions,

the argument of increased beam density near the source is eliminated, leaving

only the background density increase. The DOWN figure thus also matches the

expectations of the arguments above. The comparison of the runs also shows

that vortex interaction within the beam is at least as important as the gentle

increase in background density in predicting density swells and reductions along

the beam.

3.7.2 Background Participation

As seen in figure 3.40, the background electrons are extremely active participants

in the beam-generated vortices. Indeed, in the DOWN run, the background

is seen to have enormous bulk motions as the large fields of the vortices pass

by. All of the features observed in the beam population can be observed in the
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Figure 3.40: Background Electron Participation
Z, vz phase space showing snapshots of the final beam configuration for each of the
three runs. Only background particles within the beam channel were used.

background electrons, though the detail is considerably blurred by the wide initial

thermal distribution. The background electrons are seen to rapidly phase-mix,

resulting in the flat-top, uniform phase space density configuration predicted by

standard beam-plasma saturation theory.

3.7.3 Initial Burst

The initial charge imbalance of the injected beam electrons is eased both by

accelerating initial beam electrons faster into the box (spreading the injected

negative charge) as well as through modification of the ambient background.

These transient forces in the run produce streams of fast electrons that behave
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Figure 3.41: Initial Beam Burst Behavior
Z, vz phase space showing snapshots of the initial beam burst for each of the three
runs.

differently in the three runs as controlled by the various density profiles as shown

in figure 3.41.

In the FLAT run, the initial beam is accelerated into the box but interacts

heavily with the background, leaving a thermalized, non-coherent beam to exit

the simulation. A very small percent of beam particles escape the thermalization

process with speeds up to 138% of the beam’s injection speed.

In the UP run, the initial beam escapes into sparser regions before the back-

ground interactions can thermalize it. What background interactions remain strip

off some initial beam particles into poorly-formed vortices, leaving a thin, coher-

ent beam exiting the box which has been cooled substantially and accelerated to
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150% of the initial injection speed.

In the DOWN run, the initial beam is quickly accelerated to the box exit by

the huge charge imbalance of the beam injection relative to the sparse ambient

density. Increasing background interactions cause small vortices to form which

steal some beam speed, but the remaining very coherent beam exits at nearly

200% of the injection speed.

3.7.4 Growth of the Linear Region

The size of the linear growth region (the spatial area at the point of beam injection

within which the amplitude of oscillation is less than the thermal energy) is seen

to increase over the length of run in both of the gradient cases, but not the

uniform background. As shown in figures 3.12, 3.26, and 3.35, the initial UP and

FLAT cases linear regions are quite similar, both around 40Δ. However, as time

progresses, the UP case manages to alter the background plasma and create a

highly non-Maxwellian electron population, retarding the growth of the beam-

plasma interaction and hence increasing the size of the linear growth region to

60Δ. In the DOWN case, the relatively strong beam immediately modifies the

background plasma and local electron distribution function so as to dramatically

increase its linear growth region far beyond the other cases to 74Δ.

3.7.5 Dispersion Relation Match

The beam-plasma interaction given by equation 3.4 is shown to roughly describe

the dominant K,W mode for the similar, moderate-sized vortices of the UP and

FLAT runs (see section 3.4.3) as well as both the convective and absolute vortices

of the DOWN run (see section 3.6.2) despite their great disparity in size. The

nature of the FLAT and UP runs is seen to be extremely similar, with a clear
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linear instability region which grows, forms closed vortices, and finally saturates

through the phase-mixing of the background electrons. However, the DOWN

run’s injection region is seen to evacuate almost completely the sparse electron

background population, and the initial linear instability region is not as cleanly

defined in terms of K and W. The initial beam reflection could instead be seen

as a sheath formation process in which bursts of beam electrons are alternately

allowed through or reflected from the sheath. Certainly, such a mechanism is

operating at least as a modification to the proposed finite-width beam plasma

model. It is certainly true that in all of the runs, a region of sheath-like negative

charge build-up occurs near the beam injection point. Critically relevant to the

initial burst discussion above in all cases, its extreme dominance in the DOWN

run may result in a separate theoretical treatment required to explain all the

features of the DOWN vortices thus produced.

Error in predicting the growth of the dominant K‖ mode in those runs which

are believed to be instability-driven is seen as a result of the non-ideal nature

of our model, requiring a more complete theoretical examination if numerical

accuracy is desired. Failure to achieve a highly resolved measure of K‖ in the

box results from the extremely small region of linear behavior within which to

measure. Further, the presence of a non-negligible density gradient across the

vortex itself adds density terms otherwise excluded in our dispersion relation

model.

3.7.6 Vortex Interactions and Evolution

Vortices as noted by Miyake et al [MOM00] and Goldman et al [GON99] form

immediately from the beam-plasma interaction. Miyake noted that the vortices

are one dimensional structures (z alone in our simulation) unless ion dynamics are
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kept. In our simulation, we keep the ion dynamics, but the implied x structure

seen by Miyake forms by way of quasi-perpendicular whistler waves with perpen-

dicular wavelength of approximately 8 λDe. As our beam is very close to this

same distance, we observe none of the 2D structure suggested; however, tentative

wide-beam studies reproduced much of the structure observed by Miyake.

Once created, vortices are not static structures which merely persist until de-

caying due to damping from phase mixing of the background electrons. Their

continued interaction with other vortices, as also seen by Mottez et al [MPR97],

and the background plasma lead to a host of interesting mechanisms for increasing

the complexity of the distribution function. It has been found that the mech-

anisms witnessed in each run vary depending on density and beam speed, with

the gradient playing a very significant role.

In the FLAT case (see figure 3.21), the vortices are of nearly identical dimen-

sion, closely packed so as to share separatrix, and highly interactive. Immediately

after creation, any distortion of the beam electron orbits permits them to carry

interactions between the vortices. The shear surfaces (surfaces in phase space

where regions of oppositely-directed electron flows touch) between each vortex

become compressed, and each vortex begins to feel the fields of its neighbors.

This results in extremely strong and rapid interaction, with vortices swirling to-

gether in a merger event. Unfortunately, as all of the vortices are roughly equal

in amplitude, there can be no victor in such tugs of war, and mergers result in the

destruction of both participants into puffs of thermalized beam electrons drifting

towards the upper box exit. Such mergers seem only to support destruction and

decrease of phase space order in the beam population. However, this is merely

a result of the uniform background which, by its very nature, maintains the size

and speed of the vortices while they destroy themselves, permitting no survivors
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to escape. A second, related effect exists in that the vortices may only survive

should their source of free energy (the beam’s speed) remain intact. However, as

the destructive merger events between vortices thermalize the beam rapidly, any

damaged vortex entering such a thermalized region would rapidly disintegrate

due to a lack of energy supply. Third, since the background remains ever-present

at a uniform density, the phase mixing of background electrons in the vortices

provides a constant damping to the vortices. Together, all of these forces ensure

that no vortex structure escapes the box in this case.

In the UP case (figure 3.30), a much more intricate picture is revealed due to

the presence of the background gradient. Initially, the vortices are created identi-

cally to the FLAT case: close-packed and uniform in size. The same destructive

mergers begin to occur between many neighboring vortices in the regions of the

box near the injection region, serving to vary the amplitude and characteristics

of neighboring vortices. However, as these structures flow through the box, the

background density drops. This reduces the damping of the vortices as fewer and

fewer background electrons are available to participate. Meanwhile, a force man-

ifests downward upon the vortices, serving to artificially compress them further

and force heavy interactions. These interactions, created by external forces and

not the destructive mergers of the FLAT case, cause the vortices to assemble into

double, triple, or even quadruple vortex structures that now orbit each other as

larger, more complex structures. The condensation of vortices into larger struc-

tures also serves to rarefy the beam structures, leaving large gaps in the drifting

beam without beam-plasma oscillations present. These non-destructive mergers

tend to preserve the individual nature of each component vortex while bonding

them to each other. Individual vortices are also seen to leave such accumula-

tions, oftentimes with drift speeds reduced or even made counter to the beam

velocity. Modifying the net drift velocity of a vortex from the value derived from

136



the beam-plasma dispersion relation usually causes rapid degradation as the Φ

oscillations no longer correctly support the particle orbits. However, the UP case

steadily removes background density as the vortices travel upwards, making such

feedback weak compared to the vortex fields. Further enhancing the rarefaction

of the ambient background, the charged nature of the injected electron beam eas-

ily sweeps away more and more background plasma as it reaches higher altitudes,

creating a channel within which the beam is completely dominant. Together,

these forces yield a rarefied, bursty beam with rich structure exiting the box.

In the DOWN case (see figure 3.39), the large vortices produced by the rela-

tively strong beam to background density immediately and continuously acceler-

ate towards the bottom of the box, creating a rarefaction in the beam that nearly

prevents any large vortex interaction except the standard destructive mergers that

occur near the beam injection point. However, the presence of smaller (in size

and amplitude) vortices along the beam’s extent permits interactions between

vortices of highly dissimilar nature. Here, the smaller, slower vortices are swept

past the larger, faster vortices with only limited degradation in both participants.

These bypass events do not form mergers due to the difference in amplitude of

both vortices, as the field of the stronger may always sweep the weaker past in

a single oscillation, ceasing further interaction. A form of degradation occurs,

however, in that vortices which are about to participate in such a bypass event

emit finger-like beams of particles which remove energy from the vortex. These

fingers can themselves form even smaller vortices which may themselves then be

bypassed. Due to the strong nature of the large vortex fields, it is common for

smaller vortices to be pulled to zero or even negative speed with respect to the

beam, though in this run such a state is always a temporary one before the beam

free energy reinstates most of the smaller vortex’s drift speed. Lastly, the ever-

increasing background density steadily increases the damping of even the largest
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vortices, causing rapid degradation and loss of coherence. The inability of the

charged beam to easily clear out the density channel when moving from sparse

to dense regions ensures that the oscillations leaving the box will always show a

severely damaged nature. Together, these forces yield a highly rarefied, strongly

bursty beam with structure both from the major and secondary vortices, with

many bursty electrons accelerated up to twice the injected beam speed.

3.7.7 Vortex Characteristics and the Gradient-Ward Acceleration

The characteristics of the electron vortices change not only between the three

cases but as they move along the beam. In some cases, this is due to the passage

of time permitting continuing forces to damp or change the vortices. In gradient

cases, the further change of the ambient background density also adds a functional

dependence on height. By this motivation, we will now explore the height depen-

dence of various vortex quantities and match them to the mechanisms outlined

in the previous section.

In the top panel of figure 3.42, we plot the relation between Φ and altitude for

vortices within each of the three runs. In the FLAT case, we see the rapid growth

of beam-plasma oscillations which grow beyond the linear regime and reach peaks

of up to 3 Te, with an average peak amplitude of 2 Te. This growth reaches

saturation when the orbits of the electrons close on themselves to produce fully-

developed vortices. Immediately after creation, the amplitude of these vortices is

seen to decay rapidly, with the responsible mechanism identified in the previous

section as destructive mergers. What little survives this period then slowly decays

from background interaction until finally none are observed above half the box

height. Although it cannot be seen on the graph, the vortices represented by

the last handful of points were barely recognizable, loosely-orbiting masses of

138



Figure 3.42: Vortex Speed and Amplitude For All Runs
The top panel plots a graph of Φ amplitude (normalized to the thermal energy) versus
height for vortices observed in each run. The bottom panel shows the vortex z propa-
gation speed as a function of height. Each also shows a best-fit 5th order polynomial
for clarity.

thermalized particles barely visible on the potential grid.

In the same graph, the UP case shows strikingly similar behavior near the
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bottom of the box, although the growth of the vortices has been delayed spatially

by the retarded ambient plasma in the injection region. The growth rates for

both the UP and FLAT cases are seen to be nearly identical, although the peak

of oscillation amplitude rises higher up to 4 Te with a mean of approximately 2.6

Te. Finally, saturation occurs and some destructive merger activity takes place.

However, soon the non-destructive merger events dominate. Thus, vortices with

amplitudes of up to 2.5 Te and a mean of 1.8 Te exit the box, although these are

now observed to be complex structures of smaller vortices joined together.

Finally, we consider the DOWN case. Recall that these vortices are born on

the right of the graph and pass to the left. The deviation of vortex amplitudes is

very large, peaking at up to 9.5 Te with a mean of 6.3 Te but ranging down to 2

Te. The points below 3.5 Te are included only as indicators of the strength of the

secondary vortices, smaller and weaker than the primary. The rapid deformation

and complex finger-like projections emitted from these vortices yield a large range

of amplitudes. Note the same growth of vortex amplitude with sudden and rapid

drop to half their previous value by simulation’s end. This is due to the ever-

increasing damping effect of the background plasma, especially as these huge

vortices enter densities which simply cannot support their immense size (via

mismatch with the beam-plasma dispersion relation).

In the bottom panel of the same figure, we see the relationship between the

mean drift speed of the electron vortices and height for all three runs. In the flat

case the vortices, while being damped and dispersed, are actually accelerating

until the moment of their disintegration. This is a result that as the vortex

amplitude decreases, more and more of the slower particles escape the oscillation,

stealing energy from the fields but increasing the energy concentration in the

remaining particles. Seen from the position of energy exchange between the beam
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and the background electrons, jets of counter-streaming electrons are created in

the background electron plasma by the vortices which serve to hurl the vortex

forward at increased velocity. At the same time, fast beam electrons are slowed,

their energy given to the vortex fields, and then escape. Thus although the

vortices appear to be gaining energy, they are in fact only sharing in a fraction

of the energy exchange from the beam to the background.

In contrast, the UP case vortex speeds have a wholly different behavior. Not

only do they fail to accelerate, but instead are seen to steadily decrease with

height. This is caused by the gradient-ward acceleration force which has been

shown to be present in any gradient run. This acceleration dominates all other

speed alterations the vortices encounter. Note however that as the beam pro-

gresses to the right of the graph, the scatter in vortex speeds suddenly grows

radically. This is due to non-destructive merger events which slow some vortices

while speeding up others.

Finally, the DOWN case oscillations are seen to behave in a very straight-

forward manner. After creation, they increase nearly linearly in speed to the

end of the box. The scatter in vortex speed is remarkably small, as a bulk

acceleration works on all vortices simultaneously. The graph does not show the

degraded nature of hyper-fast, large vortices as they leave the box.

In figure 3.43, we see two graphs showing the vertical size of the beam vor-

tices as a function of height. The top panel shows the size normalized to the

FLAT case’s initial Debye length which corresponds to the initial Debye length

at Z = 188Δ in the UP and DOWN cases. From the top panel, we see that

both the UP and FLAT cases behave in a nearly identical manner, with steadily

increasing vortex size until the end of the box. This is due to the steady action

of mergers, destructive and otherwise, which always yield a vortex larger than
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Figure 3.43: Vortex Size For All Runs
The top panel plots vortex z sizes (normalized by λDe of the FLAT case vs. height. The
bottom panel shows the same graph, but normalized to the actual λDe at the center of
each vortex. Each also shows a best-fit 5th order polynomial to the data for clarity.

either initial participant. Note that vortices tend to preserve the z extent with

which they were created regardless of the ambient plasma density, as evidenced

by the identical behavior in the UP and FLAT cases. In the DOWN case, we see
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a similar behavior. After the initial period of growth, these large, non-interacting

vortices do not change their size either through interaction or any effects from

the background plasma density’s gradient.

In the lower panel of the figure, the same data is plotted but with size nor-

malized to the measured mean local Debye length in the beam channel for each

vortex. Here a more interesting pattern emerges, with both the UP and DOWN

cases showing near constant size or, in the UP case, actually appearing to shrink

relative to the expanding background Debye length. However, the DOWN case

becomes extremely exaggerated as the large vortices pass deeper and deeper in

finer and finer background plasma scales, appearing to explode in relative size by

a factor of nearly 3.

This gradient-ward acceleration is believed to be a real physical effect. The

vortex speed corresponds roughly to the predicted phase velocity given by linear

wave theory of the generating instability region. Although the vortices can be

described in no linear way, one may appeal to some surviving linear dielectric

response. As no BGK theory exists which handles a non-uniform background, it

is difficult to progress further in a theoretical manner.

3.7.8 Spectrum at Beam Exit

Our final examination of the beam system focuses on the exiting beam from the

simulation in order to identify the structures and signatures that survive the

beam-plasma interaction. In figure 3.44, we see the actual Φ signature taken

as the average of the beam channel just before exiting, but sufficiently far from

the border so as not to distort existing vortices. In figure 3.45, we see the same

data in frequency space. In both figures, each of the three runs are shown for

comparison.
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Figure 3.44: Phi Trace At Simulation Exit
The panels each show the mean Phi averaged over the beam channel near the exit of
the box normalized to the background thermal energy. Red lines indicate the observed
exit of phase space vortices.

In the FLAT case (upper panels), we observe the rapid plasma oscillations of

the “dense” ambient background with little other structure, proving the lack of

any surviving significant structure within the thermalized beam. The spectrum

shows noise only at
√

ω2
pe + ω2

pi.
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Figure 3.45: Φ Spectrum at Simulation Exit
The panels each show the Phi spectrum normalized to the local plasma frequency.
Above each figure, the local plasma frequency is quoted relative to the densest plasma
frequency in the box. Various lines denote other important frequencies in the simula-
tion.

In the DOWN case (bottom panels), we see the same pattern with a lower-

frequency pattern superimposed clearly coinciding with the exit of phase space
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vortices. In the spectral graph, we see the same plasma frequency disturbance,

though now a double-peaked structure has been added. The local plasma fre-

quency is only 0.95 of the FLAT case due to the existence of the gradient, but

the noise of the surrounding plasma leaks into the sample causing the noise to

have apparently shifted higher relative to the local plasma frequency. Meanwhile,

in the lower frequency spectrum we observe two distinct peaks. We associate these

peaks with the frequency of passage of the large vortices at 0.26, while the bounce

frequency of particles within the vortices can be seen at 0.35. The structure of

this low-frequency region is, however, quite complex as the secondary vortices as

well as transient structure involved in the destruction of the larger vortices flow

through this region continually.

In the UP case (middle panels), we observe an exit in the upper regions of

the box bathed in low density ambient plasma. Here, even when scaled to the

lower ambient plasma frequency, we observe disturbance only in frequencies lower

than the local plasma frequency. Up to five clear peaks can be observed within

the region of activity, labeled in the spectrum as A through E. The C and E

peaks correspond quite well with the two peaks of the DOWN run, correcting for

the 65% change in local plasma density between the two graphs and hence are

labeled as the frequency of passage and the bounce frequency associated with the

exiting vortices. Other nearby peaks, however, are associated with the leaving of

combined or non-destructively merged masses of vortices in groups of two, three,

or four. Their bounce frequencies are likely washed away by lack of coherence

between the member vortices, but the frequency of passage alters considerably

for each. Thus the UP case is by far the most complicated exiting signature.
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CHAPTER 4

Alfvén Waves Injected into a Density Gradient

4.1 Introduction

The inertial Alfvén wave is the dominant wave beneath ≈ 4 − 5 RE [Goe84]

involved in energy transport from the source region. These waves have an intrinsic

parallel E component. They have been suggested as a source for small-scale

structure involved in discrete aurora [LD83] [Lys90], as well as potentially a

mechanism for particle energization in the acceleration region [TMB86] [HS92].

Studied in detail by Morales and Maggs [MLM94] [MM97], such waves have been

shown to exist by measurements taken from sounding rockets [BCM90] as well as

the Freja satellite [Wah94] [Lou94] [BCP95].

Here we will generate an Alfvén wave in the inertial regime. We will study its

propagation behavior in a uniform run to gain experience with its various prop-

erties, followed by a more sophisticated setup which includes a gravitationally-

bound exponential atmosphere. Emphasis will be placed on properties and evo-

lution that might support the role of these waves in auroral models.

4.2 Dispersion Relation & Constraints

The discussion of the Alfvénic dispersion relation in nature and in the simulation

is crucial to understand our later results. Thus, some time will be spent on the
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details, similarities, and differences between the full electromagnetic dispersion

solution without assumptions, the standard inertial Alfvén wave relation, and the

simulation dispersion relation.

4.2.1 Dispersion Derivation

Using cold, two fluid theory without further assumptions, we obtain the general

dispersion relation for a fully three-dimensional, electromagnetic plasma:

[
− d
]
W 10 +

[
r2 + d(3 + 2K2 + d(3 + r2))

]
W 8

+
[
(−d)(1 + d + K2)(3 + 3d + K2)

−((1 + d)3 + 2(1 + d2)K2)r2 − dr4)
]
W 6

+
[
d(1 + d)(1 + d + K2)2 + (K2 + K4 + d2(2 + K2)2 + d(2 + 4K2) + K2

‖

+d3(2 + K2 + K2
‖ ))r

2 + d(1 + d + 2K2) r4
]
W 4

−r2
[
(1 + d)(dK2(1 + d + K2) + (K2 + d(1 + d + (−1 + d)K2))K2

‖)

+d(K2(1 + d + K2) + (1 + d)K2
‖ )r

2
]
W 2

+
[
d(1 + d)K2K2

‖r
4
]

= 0 (4.1)

where d ≡ m

M
(the ratio of electron to ion mass), r ≡ va

c
(the ratio of Alfvén

to light speed), K ≡ c

ωpe

√
K2

x + K2
y + K2

z (total wave vector normalized to the

electron skin depth), K‖ ≡ c

ωpe
Kz (parallel wave vector normalized to the electron

skin depth), and W =
ω

ωpe
. Carefully taking the limit of low frequency (discarding

the W 4 term and above), oblique waves (K‖ << K⊥), large ion mass ratio (d <<

1), and small Alfvén speed (r << 1) in that order, we obtain the more familiar

relation:
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W 2 =
K2

‖r
2

1 + K2
⊥

(4.2)

as found in Goertz’s early work [GB79]. Equation 4.2 is considered the standard

dispersion relation for inertial Alfvén waves. However, our box has considerable

differences from the full electromagnetic 3D case. We only have two spatial

dimensions, one component of the vector potential, no displacement current, and

our mass and frequency ratios cannot ever be truly taken to be negligibly small.

Beginning again with the two fluid theory but using only the actual field equations

solved by our simulation in 2.5 dimensions, we obtain the general dispersion

solution:

[
K2d(1 + d + K2

⊥)
]
W 6

−
[
d(1 + d)K2

⊥(1 + d + K2) + (1 + d2)(1 + d + K2
⊥)K2r2)

]
W 4

+
[
r2((1 + d)K2

⊥(K2
‖ + d(1 + d + K2

⊥ + dK2
‖ )) + d(1 + d + K2

⊥)K2r2
]
W 2 (4.3)

−d(1 + d)K2
⊥K2

‖r
4 = 0

Making the same approximations as above for equation 4.2, we obtain a similar

relation:

W 2 =
(

1

1 + r2

) K2
‖r

2

1 + K2
⊥

(4.4)

Notice the extra terms multiplying the otherwise identical dispersion relation 4.2.

In the limit va << c (true in the auroral region), we recover the same disper-

sion relation as the full electromagnetic 3D result. However, in our simulation

va rarely differs from c by more than a single order of magnitude and often is

larger. Thus, as seen in figure 4.1, we expect to measure wave data that differ
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substantially from the conventional Alfvénic dispersion relation due to the single

component of the vector potential that we maintain as well as the non-negligible

ratios of mass, obliqueness, and va/c. Notice the dot-dashed curves of figure 4.1

from equation 4.1 we obtain five distinct branches using real K and solving for

imaginary ω as discussed in section 3.3. The two light waves are shown in dash-

dot black starting at ω1 =
1

2
Ωe

[√
1 + 4

ωpe

Ωe
− 1

]
and ω2 =

1

2
Ωe

[√
1 + 4

ωpe

Ωe
+ 1

]
.

As our simulation has Ωe >> ωpe, ω1 and ω2 are extremely far-spaced from one

another. The whistler branch is seen starting just above the plasma frequency,

following the speed of light slope for some time, and finally asymptoting at the

electron gyrofrequency (Magenta). Note that no simulation waves (solid lines)

are present in the high-frequency limit. In truth, there is a resonance at the

electron gyrofrequency as one of the three solutions of equation 4.3 which is not

graphed.

The lower graph of the same figure shows a much more complex region, again

with dash-dot curves used for the full, electromagnetic 3D case and solid lines

used for the single A component simulation case. Between the ion gyrofrequency

and the plasma frequency we see two versions of a modified plasma wave, one

from the 3D case and the other from the simulation. Below the ion gyrofrequency,

we observe another two modes, these corresponding to Alfvénic solutions of the

3D and simulation systems of equations. Finally, the 3D approximation given by

equation 4.2 as well as the equivalent procedure used on the simulation system

4.4 is shown. Both approximations are very poor, as their assumptions of low

mass ratio, extreme obliqueness, and low Alfvén speed are invalidated by our

simulation parameters. Note the near agreement between the Alfvénic solutions,

justifying the selection of the Darwin approach.

The parameters used to obtain these graphs were those in the FLAT Alfvén
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Figure 4.1: Dispersion Relations for Alfvén Simulation
The cold, 2-fluid dispersion relations both for full 3D electromagnetic waves as well as
the more restricted 2.5D Az only simulation waves. Dash-dot lines indicate the full 3D
treatment with all components of �B and �E kept, whereas solid lines indicate curves
pertaining to the simulation. Dotted lines are low-frequency, oblique, zero mass ratio,
vA << c limits.
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run, including an unrealistic
va

c
= 3. This, combined with the fact that both

graphs assume a fixed Kx while varying Kz produce dispersion relations which

are not easy to compare with textbook cases.

4.2.2 Gradient Implications

Once we launch a traveling Alfvén wave with definite Kx, Kz , and ω into an

incident ambient density gradient along its path of motion, so long as the inter-

action is adiabatic (i.e. the z wavelength of the Alfvén wave is sufficiently small

compared to the scale length of the density gradient), we expect the Kz of the

wave to gently change while maintaining Kx and ω, continuously satisfying the

relevant local Alfvénic dispersion relation. Such changes for the parameter range

used in our GRAD run are shown in figure 4.2 where equations 4.1 through 4.4

are plotted together. In the bottom panel, notice that when scaled to the local

Debye length (which itself is changing as the density gradient is encountered) we

see a steady increase in z wavelength as the density increases in three dispersion

relations until asymptotes are reached. However, for equation 4.1, a maximum

is reached after which the wavelength decreases with respect to the local Debye

length.

In the top panel of figure 4.2, we see the same information except with the z

wavelength now scaled to a fixed reference length (in this case, the grid spacing

used in our FLAT run). Here the standard approximation (equation 4.2) is seen to

continuously decrease in wavelength with respect to the background’s increasing

density. Quite different behavior occurs for the simulation dispersion relations as

well as the full 3D treatment wherein the wavelength increases up to a maximum;

thereafter all four solutions smoothly merge together. The maximum wavelength

occurs at an ambient plasma frequency given by the unscaled equation:
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Figure 4.2: Alfvén Z Wavelength as a Function of Ambient Density
Both graphs show the z wavelength calculated from the full EM 3D case, the EM
3D Alfvén approximation, the full 2.5D simulation case, and the Alfvén limit of the
simulation case. The top shows the wavelength normalized to the actual grid z length
used in our simulations, whereas the bottom shows the same information normalized
to the local Debye length.

ωpe,max =

(
c2Kx

2

(1 + d)(Ω2
i − ω2)(c2Kx

2 − ω2)

)[
Ωi

2ω2 − ω4 + (4.5)

√
Ω2

i − ω2
√

ω2(Ω2
i d − ω2)(ω2 − Ω2

e) + c2Ω2
eK

2
x(ω2(−1 + d − d2) + Ω2

i d)

]
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Figure 4.3: Alfvén Z Wavelength as a Function of Mass Ratio
Parameters match figure 4.2 except for changing mass ratio d. Full simulation disper-
sion is used (equation 4.3).

As d is made small (and hence more realistic), the location of the maximum

wavelength decreases (figure 4.3), resulting in less and less region within which

the anomalous increase of wavelength with increasing density exists. In the real

aurora, the extreme parameter separation r << 1 as well as d = 1
1836

<< 1 limits

any such region of increasing wavelength with increasing density. However, it is

true that there exists such a region in the aurora where increasing density leads

to longer wavelengths for incident Alfvén waves.

4.2.3 Physical & Computational Constraints

In order to operate a stable and physically meaningful Alfvénic simulation, it has

been found that a wide variety of constraints must be satisfied.
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4.2.3.1 Maximum Particles Available

A straight-forward limitation based on available computer memory, the maximum

particles (Pmax) available to the simulation is linearly dependent on the free RAM.

Attempting to increase the RAM avaliable simply by adding more to each node

results in a linear increase in run-time. But if additional computers are added to

utilize their extra RAM, the additional communications requirements can cause

run-times to increase quadratically. Regardless of how the RAM is distributed,

the maximum number of particles which can be simulated is fixed at:

Pmax =
RAMtotal

RAMinvidivual particle
= (cluster constant) (4.6)

This constraint is the most fundamental measure of how large a region the sim-

ulation hardware may encompass.

4.2.3.2 Minimum Particles Per Cell

In order to maintain sufficient signal to noise ratio to obtain physical results

from a simulation, the number of particles per cell must remain above approxi-

mately 15. Beneath this value, each particle’s point-like nature overwhelms the

collective motions present in the cell, dominating all results with individual (and

meaningless) noise. Thus, we have the condition:

ppcmin ≥ 15 (4.7)

This forms a restriction on the total density contrast simulatable.

4.2.3.3 Cell Size

We utilize only square cells in this simulation. We desire each cell to be as large

as possible to permit larger regions to be studied. However, should each cell
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exceed two local electron debye lengths, wild electrostatic oscillations destroy the

simulation’s physical meaning due to a particle-grid instability. Thus, we must

obey:

Δ ≤ 2λDe (4.8)

This equation forms a dense-side constraint to the total box, as the local Debye

length here is the smallest and hence determines the grid size.

4.2.3.4 Density Gradient Contrast and Box Height

As we are interested in gravitational atmospheres, which can be characterized

by a single parameter n ≡ nmax

nmin
(density contrast), the particles per cell can

be prescribed by a simple exponential fit. Integrating over this distribution, we

obtain the total number of particles in the box:

PT =
L · nx

ln(n)
(n − 1)ppcmin (4.9)

where PT is the total number of particles, L is the length over which the gradient

will be defined, n is the density contrast, and ppcmin is the particles per cell at

the sparsest box end. L = (nz − 2 ∗ G) where G is the number of guard cells

in the box (in our case, this will always be 2). nx is the number of cells in the

x direction, which like nz must be a power of 2. Thus, given equations 4.7 and

4.6, we now have a transcendental equation for the maximum permitted density

contrast:
(nz − 2G)nx

ln(n)
15(n − 1) ≤ Pmax (4.10)

This permits a surprisingly small number of solutions due to the power 2 definition

of nx and nz, as will be shown in the next section.
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4.2.3.5 Magnetic Solver Stability

Given the nature of the Az solver described in section 2.5.2, stability of iteration

can only be assured when we meet the condition

λsd

Δ
=

c

ωpeΔ
≥ 4 (4.11)

or, stated plainly, the local skin depth must have at least 4 grid cells resolution.

If this is not satisfied, there is a numerical damping that prevents any waves from

being excited in the box. This equation provides a dense-region constraint on the

density and temperature, specifying the required ratio of Debye length to skin

depth.

4.2.3.6 Cone Prevention

Should the antenna not be well-resolved in terms of electron skin depths, a wide

Alfvén cone will be launched instead of a mostly parallel Alfvén wave beam. Such

cones have been analyzed theoretically [MLM94] as well as measured in experi-

mental plasmas [GLM94]. While such a cone is quite acceptable and physical, it

would quickly encounter the x edges of the box, wrapping and interfering with

itself in a most unphysical manner long before it filled the box’s z extent. To

narrow the angle of such emitted cones, we must ensure:

Lxantenna ≥ λsd =
c

ωpe
(4.12)

This equation provides a constraint to the size of antenna (and hence smallness

of emitted wavelength) we may use.
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4.2.3.7 λz Box Fit

Though we might have satisfied all other conditions, the Alfvén wave produced

in our box must have a sufficiently small z wavelength so that at least three such

wavelengths fit into the total z extent of our box if we are to observe a change in

its parameters as it encounters the density gradient. Thus, from the dispersion

relation 4.3, we find:

λ2
z =

(
4λsdπ

2(dr2 − W 2)(W 2d − r2)

KX2(1 + d + KX2)W 2

)
· (4.13)

(
(d + 1)KX2 − (1 + d + KX2)W 2

(r2W 2 + d2(r2(W 2 − 1) + W 2) − d(r2 + r4 + (W 2 − 1)W 2))

)

using the same normalizations for W, KX, r, and d as previously. Thus, our

condition becomes:

λz <
nzΔz

3
(4.14)

Indirectly, this equation provides a minimum size for the Debye length in the box

by placing a lower limit on the z size of grid cells as well as assisting to close the

system.

4.2.3.8 Minimize Landau Damping

Should our wave’s z phase velocity be near any appreciable electron population

density in velocity space, strong Landau damping will rapidly destroy the wave.

This leads to the emission of super-fast bursts of electrons from the antenna

region instead of coherent wave energy. Thus, again from equation 4.3 we find:

v2
phase,z =

(
(dr2 −W 2)(W 2d − r2)

(1 + d)KX2(1 + d + KX2)

)
· (4.15)

(
(d + 1)KX2 − (1 + d + KX2)W 2

(r2W 2 + d2(r2(W 2 − 1) + W 2) − d(r2 + r4 + (W 2 − 1)W 2))

)
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We utilize this phase velocity in the following condition:

vphase,z > 3vTe (4.16)

This equation indirectly determines the relative separation of plasma and gy-

rofrequencies possible in the box.

4.2.3.9 Decreasing Wavelength With Increasing Density

Finally, we have the condition that as the density increases, the wavelength should

decrease with respect to some fixed length as discussed in section 4.2.2. We utilize

the solution of equation 4.5 and make the statement:

ωpe,local > ωpe,max (4.17)

meaning that the local plasma frequency in our simulation must everywhere be

greater than the ωpe,max value for regions through which the wave will travel.

This equation acts as an overdetermined constraint that may permit several, a

single, or no solutions at all to the total constraint system.

4.2.4 Parameter Selection

For our simulation, we have memory sufficient to sustain 12 × 106 particles. Se-

lecting nx = 256 to offer the Alfvén antenna sufficient resolution to operate with

only minor cone spread, we quickly determine that an optimum solution exists

for a density contrast of 8 and nz = 512. Although all of the above limiting

equations are linked, these three parameters are fairly independent of the run

dynamics, being constrained more by hardware limitations than physics. As nx

and nz would have to be changed by a factor of two (they are restricted to powers

of 2 by the FFT routine), this proves to be the only reasonable set of parameters
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permitted by our system. We set Δ to be twice λDe at the bottom of the box

where the local Debye length is smallest.

Our antenna is chosen to be one fifth of the box width, which decreases the

emitted x and z wavelength sufficiently to fit several z wavelengths in the box

while maintaining a cone angle that does not wrap across the periodic x bound-

aries. As we barely satisfy this equation, a cone is still emitted. The number

of z wavelengths between the launcher and the end of the box is approximately

3. However, the final constraint of equation 4.17 proves impossible to impose on

the system; it would require a larger system by a factor of 4-16 times as many

particles. Thus, we are unable to incorporate this constraint into the system.

4.3 Simulation Setup

In these simulations, we utilize the restricted Darwin version of the Aurora code

(see section 2.2.4 for details). Like the electrostatic studies of chapter 3, a cold

ionosphere is represented by the same gravitationally-bound plasma atmosphere

as in section 3.2. However, instead of injecting a beam of cold, fast electrons, we

now provide energy through an electric field antenna. The antenna consists of a

pure, external Ex field with no accompanying Ez added onto the self-consistent

�E field solved by Poisson’s equation. The antenna field is specified to be a single

x oscillation of the 5th perpendicular box modeconsis. Some extent is given in z

only to assist in the coupling efficiency.

Two such antenna cases are considered, one with a flat, uniform ambient

background (gravity set to zero) and another with identical parameters at the

antenna launcher region but a strong density gradient. These runs will be called

FLAT and GRAD respectively in the remainder of this chapter.
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Figure 4.4: Antenna Box Configuration
The box setup for all Alfvén runs. Green lines indicate the edges of various conical
emissions from the antenna, with wider cones corresponding to higher x mode numbers.

For both the FLAT and GRAD runs, the ion to electron mass ratio is Mi

me
= 25,

and the temperature ratio is Te

Ti
= 1. Most system parameters change as a

function of height with the exception of the constant thermal ratio λsd

λDe
= c

vTe
= 9.

Recall that as we are not using full relativistic electromagnetics (no displacement

current), c is a reference speed without any particular physical importance. As
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shown in figure 4.4, we have positioned our Ex antenna high in the box. Although

the emissions from the antenna are antisymmetric cones in z, we desire to permit

only one of the cones (downward) to evolve over as great a distance as possible,

hence this high placement. We observe little reflection from the top boundary,

which has been placed far enough away to prevent strong simulation instability

due to large launcher fields interacting with injected particles. The antenna size

is one fifth of the x system size. As seen in figure 4.5, the antenna excites a

range of modes. This was not the actual pattern of stimulated modes observed

in the plasma, however, as the antenna’s efficiency is also a function of Kx. The

actual Ex of the antenna (designed to push the jx ion current and thus trigger

an Alfvénic oscillation) is smoothed over the launcher region slightly to avoid

sharp z edges as discussed in section 2.5.2. As shown in figure 4.6, the variation

in z wavelength and phase velocity between the modes is rather small, though

detectable. The major observed difference will be in the conical emission pattern

vs. the collimated emission. This distinction will be discussed more completely

below. The precise density arrangements used for both runs are shown in figure

4.7, with the location of the antenna region outlined with purple lines. Notice

that from the antenna region to the bottom of the box is only a density contrast of

6.5. The additional space above the launcher region is required to buffer some of

the simulation edge effects from the launcher. As will become readily apparent,

our parameter selection was dictated by the amount of computer memory at

our disposal. In this case, the launcher region would ideally have at least a

full wavelength between itself and the boundary, and preferably more. However,

suitable results may be obtained using the above configuration. The bottom

panel of the same graph shows the resulting βe value in both runs.

In figure 4.8, the top graph shows the number of local skin depths (
c

ωpe

)

required to span the x width of the box as a function of height. As discussed
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Figure 4.5: Antenna Excited Modes
The magenta lines depict a mode 5 antenna result, whereas the blue indicate a contin-
uous, true mode 5 input signal.

Figure 4.6: Alfvén Predicted Mode Parameters
The z wavelength (in cells), z phase velocity (relative to c), and the predicted conical
behavior for each of the dominant modes emitted by the antenna.

in equation 4.12, this ratio determines the collimated vs. conical structure of

emitted waves. We see that for modes 4 and 5, we must accept a moderate

cone angle as shown in the top graph by the antenna region’s presence below the

163



Figure 4.7: Relative Densities and Beta for FLAT and GRAD
In the top graph, the ambient plasma density for the flat run (orange) and gradient
run (blue) are plotted. The antenna position is near the crossing point, indicated with
a large magenta rectangle. In the bottom graph, the electron Beta values are plotted
for the FLAT and GRAD case.

antenna requirement line. However, for mode 3, we have well resolved the mode

requirement and should expect collimated behavior. In the bottom panel of figure
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Figure 4.8: Local Skin Depth Measures
Top: The number of local skin depths across the box width for FLAT and GRAD runs.
Bottom: The number of grid spacings per local skin depth for FLAT and GRAD runs.

4.8, we see the number of grid spacings (Δ) per local skin depth as a function

of height. Here, the only importance of such a measure is from the constraint

equation 4.11. As shown, everywhere the constraint is satisfied, as required to
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Figure 4.9: Predicted Z Wavelength of Alfvén Waves
The Z wavelength of the Alfvén wave in both the FLAT and GRAD case using the full
fluid simulation expression for modes 3, 4, and 5.

maintain magnetic solver stability.

Figure 4.9 shows the predicted z Alfvén wavelength as a function of height. As

discussed in the constraint equation 4.14, we must maintain at least room enough

for several wavelengths to fit into the box if we are to be able to observe wave

parameter changes as they move through the density gradient. Here we see we

will be attempting to observe a change of approximately 30% in the z wavelength.

Figure 4.10 examines the calculated Alfvén phase and group velocities (derived

from equation 4.3) as compared to the thermal electron velocities for the three

major excited modes of our antenna. Should the z phase velocity of the waves fall

below the top green line (3 vTe), Landau damping will destroy the wave before we

may observe it as discussed in the constraint equation 4.16. The lower green line

is provided as an absolute minimum, beyond which no wave can possibly survive

immediate Landau deconstruction. As shown, Landau damping will not play a
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Figure 4.10: Predicted Z Phase and Group Velocities of Alfvén Waves
The phase and group z velocities of the Alfvén wave in the FLAT and GRAD case for
modes 3, 4, and 5. Note the green horizontal lines which represent VTe and 3VTe.

major role in the discussion of our results.

The top panel of figure 4.11 shows the electron gyrofrequency to local plasma

frequency ratio throughout the box for both the FLAT and GRAD runs. A red
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Figure 4.11: Local Plasma Frequency and Alfvén Velocity vs. Height
Top: The ratio of electro gyrofrequency to local plasma frequency for the FLAT and
GRAD case.
Bottom: The ratio of Alfvén velocity to c and the electron thermal velocity.

line shows the value of gyrofrequency to plasma frequency corresponding to the

minimum tolerable plasma frequency as computed in the constraint equation 4.5.

Notice that most of the box is not in the proper region; all of the graph should
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be below the red line to ensure the Alfvén wavelength decreases with increasing

density. We were not able to make a large enough system to sample such a

configuration, as we were limited by computer memory. Hence, we have simply

accepted this mismatch between reality and our theoretical construction in the

hopes that relevant physics remains. In the bottom graph of the same figure, we

see a reference display of the Alfvén velocity relative to both c and the electron

thermal velocity. Notice that the Alfvén velocity is substantially higher than the

speed of light! This is not significant, however, due to c being only a reference

speed without relativistic or displacement current importance.

4.4 Flat Run Results

As the simulation begins, we immediately observe the emission of the predicted

Alfvén wave cone as shown in figure 4.12. Despite an antenna input Ex strength

of 0.19 cB0, the emitted waves crest at a mere 0.015 cB0, yielding an antenna

efficiency of under 8% based on amplitude or under 1% based on field energy. We

initially investigate the effect of the boundaries on the wave propagation.

4.4.1 Wave Behavior Before/After Boundary Interactions

In the left panel of figure 4.13, we observe a conical Alfvén cone emission traveling

freely through space. This cone is somewhat ill-defined, as several modes are

initially overlapped and the transient group velocity flows at the edges of the

wave are as important as the phase-velocity troughs and crests. In the middle

panel, we have captured a snapshot just as the well-defined Alfvén cone reaches

the boundary. Although we observe very weak electrostatic emissions from the

boundary, these are seen to begin before the wave actually reaches the edge and do
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Figure 4.12: FLAT Alfvén Cone Structure
All graphs show the ratio Ex

Bz0c . The line graphs have been taken from slices through
the central contour plot. This snapshot corresponds to t=750 timesteps (89 Δtωpe).

not strengthen significantly after interaction. Further, as wave energy is wrapped

periodically across x, an interference pattern manifests along the x boundary as

crests and troughs meet. In the right panel, interference effects tend to manifest as

“swollen” features at the ends of the long, slender Alfvén cone structures at either

x boundary. A thorough analysis shows no Alfvénic reflection activity at all, with

all wave modes present having only downward-propagating natures. This is due

to the fact that the absorptive boundary conditions remove all particle knowledge

of the wave, while the Φ = 0 condition at the bottom causes Ex reflection but not

Ez. Interestingly, since By requires no boundary condition due to the omission of

the z derivatives in its source equation (see section 2.5.2), it too has no reflective
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Figure 4.13: FLAT Reflection
Graphs are of Bz/B0. The left panel shows a snapshot of the early conical Alfvén wave
before it interacts with boundaries. The middle panel shows the same structure as it
encounters both the x and z boundaries simultaneously. The right panel shows a far
future time wherein an equilibrium has been established.

nature at the boundary. Thus, whatever is reflected at the boundary is only a

minor electrostatic response to the passing charge density oscillations of the wave

and cannot result in a reflected Alfvén wave. Indeed, it is seen only to produce a

very gentle plasma oscillation which is completely swamped by the Alfvénic flux.

In figure 4.14, we examine the averaged Kx power between z = 100 and

z = 350 in the last timestep of the run. Observe the large range of Kx modes

excited, with modes 4, 5, and 6 dominating. As all three of these modes are
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Figure 4.14: FLAT Alfvén Kx Spectrum
The Kx power spectrum of the By field averaged in Fourier space between 100 < z <

350. The red highlighted region indicates the division between well and poorly resolved
modes, and hence the collimated or conical behavior.

conical in nature, they have overlapped to produce the strong conical structure

observed in the box. Meanwhile, the comparatively weak mode 3 dominates the

interior of the cone structure where higher modes are forbidden. As shown in the

graph, the anticipated power of the mode 3 collimated wave is roughly 17% of

the total combined power in the conical walls.

We see a similar picture in figure 4.15, where Poynting vectors have been po-

sitioned across the grid for four time snapshots. As these are non-time-integrated

Poynting fluxes, we must first learn how to interpret the various swirls and pat-

terns. In the upper left panel, we see a time near the initiation of the simulation.

Notice that the unagitated plasma away from the antenna still has structures in-

volving circulations and instantaneous divergences (shown in red boxes). These

closed swirls, flows, and bulges all indicate non-traveling wave behavior present

in the ambient background noise, and their presence later in the run should not

confuse the observer with actual wave behavior.
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Figure 4.15: FLAT Poynting Vectors
Graphs of the Poynting vector grid at four different times. The whole box is shown,
though Poynting vectors have only been plotted every 4 cells. The whole grid was
smoothed by a running average using 16 cells before being averaged down. Large green
arrows serve as cartoon indicators of the net Poynting vector in a region, and red boxes
serve to draw attention to interesting regions.
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In the top-right panel, we see the first few Alfvén wavelengths released from

the antenna, before any contact with the boundaries has yet occurred. Notice that

the Poynting flux (green cartoon arrows for clarity) is seen to maintain a direction

along the cone angle of the emitted wave, but that as the wave progresses down

the simulation the Poynting flux is seen to swing to the left, then the right, then

left again. Indeed, in movies of the Poynting flux, one observes these left-right

oscillations regularly, the average of which is the time-averaged Poynting flux

normally discussed in theory. Notice also that we observe no return flux from the

top boundary, despite the up-down symmetry of antenna emission. This supports

our theory that little wave energy will survive impact with the top and bottom

boundaries. Notice also that the strong conical Poynting flux structure is formed

by the superposition of x modes 4 and 5, while a comparatively weak mode 3

struggles down the middle hollow of the cone. The modes were analysed using

localized spatial Fourier transforms.

In the bottom-left panel, we observe the moment that the Alfvén cone strikes

the bottom and side boundaries. Notice the turbulent, complex bottom boundary

as the bulk of displaced density and transient waves encounters the boundary.

Inside the hollow of the Alfvén cone (green boxes), we observe weaker downward-

propagating mode 3 waves without conelike behavior. The small red box in the

upper-left of the panel shows that some weak upward-traveling electron structures

are observed. These are emitted from the lower boundary before the wave fully

intersects the boundary, and are due simply to the large potential structures of the

transient wave flows interacting instantaneously via Φ with the particle injection

routines at the bottom edge of the box. This sort of behavior is commonly seen

in our box any time the plasma is seriously disrupted from equilibrium and makes

up much of the background noise.
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Finally, in the bottom-right panel, we observe the Alfvén cone pattern after

sufficient time for a full reflection from the bottom to reach the top. Observe that

the mode 3 inner cone wave has grown and become more clearly visible, though

still far less intense than the conical components. One may also note the small

traveling particle signature (small red box) as in the previous panel. The energy

of these traveling electron bursts is no more than ≈ 5% of the incident Alfvén

wave. Downward bursts are also present but harder to see due to immediate

interaction with the antenna, and the fact that the antenna cone only energizes

a small portion of the upper boundary.

4.4.2 Wave Characteristics

As we have shown that reflection at the boundary is not a significant contribution

to the structures in the simulation, we now turn our attention to analyze the last

timestep in the run (t = 4200Δt). Shown in figure 4.16, the wave structures in

the box have grown and come into a rough equilibrium, with wave amplitudes

growing little by the end of the run. This permits us to study these equilibrium

wave structures and compare with our cold fluid theory described in section 4.2.

As predicted by figure 4.5, the majority of launched flux resides in the conical

emissions of modes 4 and up, whereas only weak emissions are seen in the more

collimated mode 3 within the cone’s hollow. Still, the flux of mode 3 will be

sufficient to make measurements of its wave parameters. Thus, we see that the

emissions from our antenna naturally provide two simultaneous measures of wave

interaction for our future GRAD case using high and low modes which naturally

spatially separate.

We measure the wavelength of both the cone and the hollow separately to help

separate the modes, resulting in a measured cone λz = 100±6Δ and a collimated
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Figure 4.16: FLAT Filled Box Snapshot
All of these graphs are taken at the final timestep of the run (t = 4200Δt = 500Δtωpe >

5 box travel times) using a running average smoothing of 32 cells by 32 cells on the
grid.
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λz = 136 ± 5Δ. Referencing figure 4.6, we see that for the outer cone structure,

agreement with a mix of the listed wavelengths leaning towards higher modes is

evident, whereas the measured wavelength for the collimated inner cone struc-

tures show evidence of a mixture of mode 3 and lower. No particular trend with

height is observed, with the exception that near the antenna all the modes mix

together, with the smaller wavelengths dominating visual inspection. Similarly,

we measure the z phase speed relative to the speed of light to be vz/c = 0.49±0.01

for the outer cone and vz/c = 0.65 ± 0.02 for the inner column. These compare

beautifully with the theoretical predictions of figure 4.6.

Figure 4.17 shows two slices at x=115 and x=60, sampling a mixture of low

and high modes in the former and strictly higher modes in the latter. We see

clearly the phase relation of both high and low x modes between the various

electromagnetic fields. Ez and By are in-phase, whereas Ex is perfectly opposite

to them both. Naturally, jz is in phase with By, while the density variations and

jx,ions are too noisy to well sample. As shown in the left two panels, the region

within which we may sample the low modes is rather short, and determining

wavelengths and velocities requires great care.

4.4.3 Thermal Evolution

Examining the left two panels of figure 4.18, we observe an interesting but some-

what unsurprising result: as the Alfvénic flux is driven into our box, a small

(0.6%) amount of plasma density is lost due to various processes such as pon-

deromotive effects and simple particle acceleration. However, when we examine

the average energy per simulation particle, we observe a more telling signature.

In the electrons, we see the burst of energy characteristic of starting our Darwin

simulation, which settles back down to initialization levels. However, the ions
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Figure 4.17: FLAT Alfvén Wave Participants
These four graphs show a slice along x=118 and x=60 in the last timestep of the run.
Each has had a running average smoothing using 16 cells. Notice the y scale on the
lower graph is an order of magnitude larger than the upper graph. Dark regions indicate
the end of the cone intersection and the antenna region respectively from left to right.

show not only strong oscillation in energy at the frequency of the driving an-

tenna, but also are seen to be continuously gaining energy, a process which has

only begun to level off at the end of our simulation. For the kinetic energy to

stay and even increase in the box means the ions have captured the energy in

their perpendicular motions, or else an equilibrium would have been reached far

earlier due to border losses. Since the average ion thermal drift requires around
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Figure 4.18: FLAT Alfvén Particle Energies
Global diagnostics for the FLAT Alfvén run. All y axis are % differences from initial
plasma parameters. The two left panels show the antenna response, while the two right
panels show identical plots without any antenna activity.

17,000 timesteps to complete one crossing of the box, our 4,200 timestep run has

contained a great deal of antenna energy in the perpendicular ion motions. The

right two panels show an identical run without any antenna activity, demonstrat-

ing the small response to system initialization followed by simple equilibrium.

We now examine the rising stored ion energy and its spatial dependence as well

as partitioning between particle species and velocity components.
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Figure 4.19: FLAT Temperature Grids
All of these graphs are taken at the final timestep of the run (t = 4200Δt = 500tωpe > 5
box travel times) using a running average smoothing of 8 cells by 8 cells on the grid.
Green numbers indicate the peak value directly to their right.
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The spatial arrangement of the temperature increase is of great importance,

as shown in figure 4.19. Shown in the figure is the relative increase or decrease

from the initial temperature in the final timestep, with zero now representing no

change (for easy color scaling). The Alfvén wave cone is only clearly visible in

the upper-right graph of the electron Tz, with the addition of a beam of heated

electrons passing from the antenna region along the magnetic field lines and out

of the box. The other two components of electron temperature show no real

stimulation by the presence of the launcher. However, the ions are as expected

fully engaged by the launcher. The Tz of the ions shows an overall modest heating

throughout the box as well as a structured heating peak near the antenna. This

structure of three vertical lines is seen to oscillate, with the two exterior lines

orbiting the central, thicker band at the ion gyrofrequency. Tx and Ty of the ions,

however, absorb an enormous amount of energy from the antenna as it is they that

attempt to form a sheath to negate the launcher’s external Ex field. In so doing,

they are given massive kicks in the x direction, which then excite larger gyroradii

in both x and y, heating both components simultaneously. The antenna phase

is preserved in these bursts of hot ions, which explains the surprising coherence

of the vertical line structures throughout the entirety of the box. These hot ions

are given no additional energy in z, however, and hence they simply drift out of

the antenna region at the ion thermal velocity. Thus, despite the length of our

run, these excited ions have not yet had time to reach the bottom edge of the box

and form an equilibrium flow. This column of hot ions explains the enormous ion

kinetic energy gain of figure 4.18. To study the heating effect of Alfvén waves

upon the background plasma, we must omit this collimated region from future

graphs.

In figure 4.20 we see the x, y, and z components of average temperature for

both the electron and ion populations as a function of time. We have omitted the
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Figure 4.20: FLAT Relative Temperatures vs. Time
Each species and component of temperature is shown normalized to the initial average
temperature across all species and components. All temperature data between 103 <

x < 153 has been omitted to remove direct antenna-ion heating. The top graph shows
the heating results while the antenna is active, while the bottom shows the baseline
without antenna excitement.
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central column of direct ionic heating due to the antenna ranging from 103 < x <

153 along all z. Note that we have normalized to the initial average temperature,

and hence a value of 1 would indicate no change from the initial temperature

setting. Just a few timesteps after the run begins, the characteristic Darwin

heating of the electron Tz is clearly evident. As this heating (or cooling) of

electrons is effectively random, the variance seen between the antenna and non-

antenna case is not physically significant. As time progresses, the electrons are

seen to re-equilibrate, both the initial heat burst in Tz as well as cooling 2% below

the initial temperature settings in Tx and Ty. The electron cyclotron frequency

cannot be seen in the graph due to low resolution.

Meanwhile, the ions show a totally different picture. Nearly unaffected by the

initial heating burst, Tx and Ty show slow heat gains with asymptotes towards

a 3% increase in temperature. Ty follows this curve (as it must by gyromotion),

but shows much larger swings at precisely the ion gyrofrequency than does Tx.

Finally, Tz of the ions in both antenna and non-antenna runs shows a steady

growth that has reached 6% by the end of the run. The presence of the ion

gyrofrequency is due to the edge of the column effects.

Thus, we have little to no evidence of any true background plasma heating,

with energy instead being deposited mainly in the perpendicular temperatures

of the column of ions directly passing through the antenna and slight numeric

heating of the background plasma.

4.5 Gradient Run Results

As the simulation begins, we again immediately observe the emission of the pre-

dicted Alfvén wave cone as shown in figure 4.21. The pattern is quite similar
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Figure 4.21: GRAD Alfvén Cone Structure
All graphs show the ratio Ex

Bz0c . The line graphs have been taken from slices through
the central contour plot. This snapshot corresponds to t=750 timesteps (89 Δtωpe).

to that of the flat case, as expected since the parameters at the antenna are

matched precisely. On first inspection, we see that the gradient has not changed

the fundamental nature of the emitted structure, with short-wavelength conical

emissions surrounding larger wavelength collimated emission. As we were only

able to vary the background density by a factor of 6.5, changes in the wave nature

are expected to be subtle and will require careful examination to detect.
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Figure 4.22: GRAD Reflection
Graphs are of Bz/B0. The left panel shows a snapshot of the early conical Alfvén
wave before it interacts with boundaries. The middle panel shows the save structure
as it encounters the z boundary. The right panel shows a far future time wherein an
equilibrium has been established.

4.5.1 Wave Behavior Before/After Boundary Interactions

The left panel of figure 4.22 shows a very similar conical Alfvén emission traveling

freely through space. Like the FLAT case, this cone is somewhat ill-defined as it

has not yet approached the continuous wave limit and is comprised of a mixture

of modes. In the middle panel, we have captured a snapshot just as the well-

defined Alfvén cone reaches the boundary. Notice that a partially self-focusing

behavior is visible on the cone edges, preventing significant interference across the
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x periodicity. In the right panel, we observe a dramatic new effect: a powerful,

reflected wave returning towards the source outside the cone channel. As we have

shown, the z boundary is not reflective to these waves; this upward-traveling wave

must arise from the background density gradient.

We see a similar picture in figure 4.23, where Poynting vectors have been

positioned across the grid for four time steps. In the top-left panel, we see the

very beginning of the run, with strong Alfvén flux just escaping from the antenna

region. The extremely long arrows which may be seen result from the initial

sheath oscillation, and they are not present in the following panels.

In the top-right panel, we see the first few Alfvén wavelengths released from

the antenna, before any contact with the boundaries has yet occurred. Instead

of the more clearly conical emission of figure 4.15, we observe that the cone is

clearly bent inward to form a nearly collimated energy flow along the magnetic

fields. Resulting directly from the density gradient, we will examine this behavior

in greater detail in the following section.

In the bottom-left panel, we observe the moment that the Alfvén cone strikes

the bottom and side boundaries. The cone appears to have spread wider near

the boundary. This is also a result of the density gradient as well as the product

of reflected wave interference patterns.

Finally, in the bottom-right panel, we observe the Alfvén cone pattern after

sufficient time for a full reflection from the bottom to reach the top. A dramatic

Alfvén flux is observable along the x boundaries of the box traveling upwards,

the product of wave interaction with the density gradient. The entire box has

begun to form a standing wave, with a hollow forming within the cone due to the

net-zero flux of both a downward and upward reflected column mode. The Alfvén

cone is not similarly canceled due to the fact that the reflected cone may continue
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Figure 4.23: GRAD Poynting Vectors
Graphs of the Poynting vector grid at four different times. The whole box is shown,
though Poynting vectors have only been plotted every 4 cells. The whole grid was
smoothed by a running average using 16 cells before being averaged down. Large green
arrows serve as cartoon indicators of the net Poynting vector in a region.

to propagate across field lines into spatial areas where no downward components

exist, resulting instead in the complex, partially-negated flux pattern witnessed
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near the bottom of the boundary in addition to clear upward-traveling reflections.

4.5.2 Gradient Effects

Two distinct behaviors present in the GRAD run but not in the FLAT run are

clearly direct results of the presence of the density gradient.

4.5.2.1 Cone focusing

Figures 4.22 and 4.23 showed clear demonstration that the emitted Alfvén cone

is being bent inward or focused by the density gradient. This behavior is as

predicted by figure 4.9, where increasing z wavelengths due to the density gradient

yield increasingly parallel propagation angles. Further, the increasing wave speed

predicted in figure 4.10 will also serve to draw out the cone pattern yielding

identical results to the propagation angle. These effects are valid for all modes of

the wave, but more so for the highest modes which also form the outer boundaries

of the cone structure. Thus, the sharp, distinct edges of the cone suffer the most

bending, yielding the most dramatic effect to the eye. Further investigating figure

4.9, we see that there is always a point in the lower portion of the box where

the trend to increase in wavelength reverses. For the higher modes, this point is

lower in the box (mode 5 is at z=100 for example). Thus, it is unlikely that we

will observe significant defocusing or cone broadening except at the very bottom

of the run, near the boundary effects at z=0. Some evidence can be seen in

figure 4.23 for such broadening, but a clear measurement of such broadening is

not possible without a considerably z-extended box.
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Figure 4.24: Initial vs. Reflected Amplitude
This graph shows the By amplitude at two points simultaneously through time. Both
points are at z=285, with “Cone” point at x=90 (within the emitted Alfvén cone edge)
and “Reflect” at x=19 well outside the Alfvén cone. The transparent red shading
shows the moment the emitted cone first arrives at z=285, while the transparent blue
shading shows the first clear arrival of the reflected wave. Green horizontal bars indicate
measurements of wave amplitude.

4.5.2.2 Reflection Measures

As we have clear, strong, coherent reflection from the density gradient, a quantity

of interest is the amount of Alfvén flux which is so diverted back at the source.

Such a measure is made difficult by the mixture of modes within our conical

structure as well as the continuous nature of wave reflection within the gradient.

To achieve an estimate, we measure the By amplitude at two points: one clearly

within the downward-traveling Alfvén cone (but not within the low-mode col-
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umn), and another well outside the entire cone structure that is only accessible

by reflected waves. Figure 4.24 displays the result. The red trace on the graph

indicates the downward-traveling flux within the Alfvén cone structure, while the

blue shows the point only accessible to reflection. We estimate the average am-

plitude of the initial wave over three periods, and the reflected wave over seven

periods. The result indicates that, of the high-mode Alfvén wave amplitude,

approximately 70% is reflected by our gradient. Comparing the abs (Ex × By)

results in an efficiency of 50%. We are unable to process the x mode participa-

tion spectrum in the reflection due to the small size of the box. The low modes

overlap with their reflections by their very collimation, revealing only that the

reflected percentage of such modes must be similarly large or higher to so well

cancel the downward wave pattern.

4.5.3 Wave Characteristics

We now focus on comparing the wave characteristics within the box to our theo-

retical predictions. As strong reflections do occur due to the gradient, we utilize

the earliest timestep in which the cone pattern has filled the box entirely, so as

to reduce the effect of interference from reflected wave energy. This timestep is

shown in figure 4.25. We will be comparing with the predictions of section 4.2.

Figure 4.25 shows a variety of information about the Alfvén wave pattern

in the simulation. The wave pattern is most distinctive in both Ex and By,

consistent with the Alfvén wave mechanics. The electrostatic Ez shows only weak

excitement away from the antenna, though the wave pattern is still visible. The

charge density grid shows very slight excitement but with a beautifully complete

wave image, clearly illustrating the difference in central column wave propagation

vs. cone edge propagation. The total z component of the current density is also
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Figure 4.25: GRAD Filled Box Snapshot
All of these graphs are taken at t = 750Δt = 60ΔtΩi, shortly after the Alfvén waves
have filled the box for the first time but before sizable reflection waves have set up.
They have been smoothed by a running average of 16 cells by 16 cells.
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Figure 4.26: Alfvén Z Wavelengths in the Gradient
Here we observe the predicted theoretical z wavelengths for modes 3-7 for the gradient
box run. In addition, z wavelength measurements of the cone edge and cone center
respectively are shown with plusses and triangles respectively. The shaded regions
indicate, from left to right, the top of the exposed column after the cone has propagated
away, the emergence of the exposed cone edge from the antenna emission, and the
antenna region itself.

shown. Note that while the wave is quite robust in the image, it is overlaid atop

a general flow of electrons upwards in the box. This is due to the evacuation

of a small percentage of the gradient plasma due to heating and ponderomotive

forces. At the end of the run (timestep 4500), this flow resulted in a 2% decrease

of plasma density in the bottom of the box and a 5% increase of plasma density in

the top of the box. Lastly, the Poynting vector plot shows the lack of significant

reflected waves propagating out of the structure, though some interference has

already begun to form as soon as the wave interacts with the gradient.

Measurement of the wavelengths at various heights in the box is complicated
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due to the multi-mode emission of our antenna combined with the effects of the

density gradient. In figure 4.26, we see the theoretical predictions of z wavelength

vs. height for modes three through seven. Recall that modes three and four are

emitted in a collimated manner from the launcher, while modes five through

seven are emitted in cones of various angles. Z wavelength measurements taken

at the outer edge of the cone should therefore sample the higher modes (smaller

wavelengths) while the opposite should be true of the central column region.

Measurements near the antenna region (340 < z < 512) are impossible due to

the blending of all emitted modes and the antenna sheath region making the

structure too complicated to analyze. As soon as the cone edge is exposed,

measurements indicate scattered results ranging from 96 < λz < 144 in units of

grid cells. As shown on the graph, these measurements not only cluster around

the theoretical predictions for modes five through 7 but even show the trend

of increasing wavelength as predicted by cold fluid theory. Lower in the box,

z < 250, the conical emissions have finally propagated out of the central column

region sufficiently to expose a clean low-mode signal. These wave modes are much

more difficult to analyze for wavelength, however, since their gradient-induced

reflections immediately travel directly back upon the source. This, combined

with their increased wavelength (and hence less space in the run to diagnose

them) yields higher error. However, as shown in the figure as small triangles, the

wavelengths measured in this region are still relatively close to mode three and

four as predicted by theory. No trend of wavelength increase or decrease could

be detected for lack of accuracy and data points.
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Figure 4.27: GRAD Alfvén Particle Energies
Global diagnostics for the GRAD Alfvén run. All y axis are % differences from initial
plasma parameters. The two left panels show the antenna response, while the two right
panels show identical plots without any antenna activity.

4.5.4 Thermal Evolution

Examining the two left panels in figure 4.27, we again observe the gentle decrease

of plasma density in the box due to plasma heating and pondermotive effects as

well as the direct excitation of ion energy as in the FLAT case. On the right,

we see the system without agitation from the antenna. Particle number and

population mean kinetic energy stay constant throughout the run to within 0.1%

and 3% respectively.
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Figure 4.28: GRAD Temperature Grids
All of these graphs are taken at the final timestep of the run (t = 4200Δt) using a
running average smoothing of 8 cells by 8 cells on the grid. Green numbers indicate
the peak value directly to their right.
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Figure 4.28 again demonstrates the great significance of the spatial depen-

dence of temperature increase. Using the same axis as before with zero (black)

being no temperature deviation from initial simulation setup, we observe enor-

mous energy being delivered into the perpendicular ion components, with compar-

atively weak excitation of both electron and ion parallel temperatures. The elec-

tron parallel temperature signature clearly indicates the wave as before, though

more so now with broader features. The reflected wave is also quite clear. The ion

behavior is nearly identical to the FLAT case, complete with oscillating patterns

of two or three lines reaching down along the magnetic field due to perpendicular

ion burst release from the antenna.

Examining figure 4.29 we again see the x, y, and z components of temperature

for both the electron and ion populations as a function of time. As before, we

have omitted the central column of direct antenna ionic heating ranging from

103 < x < 153 along all z. Note that we have normalized to the initial average

temperature, and hence a value of 1 would indicate no change from the initial

temperature setting. Just a few timesteps after the run begins, the characteristic

Darwin heating of the electron Tz is clearly evident. Ion perpendicular temper-

ature asymptotes in both cases to 1.05 times the initial temperature, while the

electron parallel and perpendicular temperature seems to be increasing at the

end of the antenna run. We see absolutely no evidence of strong plasma heating

due to the presence of the Alfvénic flux. The fact that we must omit the central

column unfortunately removes much of the flux from this particular study. In

space, such waves propagate far from their source and would become decoupled

from any such ion disturbances.
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Figure 4.29: GRAD Relative Temperatures vs. Time
Each species and component of temperature is shown normalized to the initial average
temperature across all species and components. All temperature data between 103 <

x < 153 has been omitted to remove direct antenna-ion heating.
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CHAPTER 5

Conclusions

5.1 Solitary Waves

5.1.1 System Summary

A 2.5D electrostatic PIC simulation was used with mobile ions and electrons. A

third population of cold electrons was injected from the top or bottom of the box

in a narrow (8.4λDe) beam at 4 vTe. In the FLAT run, this beam was incident

on a uniform background, whereas in the UP and DOWN runs a magnitude 10

density gradient was used. In the UP run, the beam enters at the bottom dense

region, whereas in the DOWN run it enters from the top sparse region. A static,

uniform, background B field was imposed parallel to the gradient and the beam

motion.

5.1.2 Confirmatory Results

The robust generation of solitary structures, but not double layers, arises imme-

diately from the injection of the electron beam. These structures are electron

phase space holes representing vortices in v‖ and z (the vertical/parallel distance

coordinate) phase space (figure 3.12). Such structures are positively charged and

range in size from a few Debye lengths to several dozen. While being quite un-

like the original solitary structures found by Temerin et al [TCL82] which were
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negatively-charged ion-timescale phenomena, these electron phase space struc-

tures appear to be identical to the more recently discovered “fast solitary waves”

[Erg98] [ECM98b]. These structures are also closely related to those seen in

similar beam-plasma simulations performed without a density gradient [STS00]

[GON99] [MOM98].

5.1.3 New Results

The use of a finite beam is seen to support robust electron phase space holes which

arise from a modified beam-plasma instability. The frequency of initial linear

excitation is seen to be increased beyond the ambient plasma frequency, with

subsequent vortex formation proceeding normally. However, no essential new

physics was observed due to the finite beam as compared with the 1-D instability

studies. The injection of the electron beam from the boundary creates a rich

system response which determines the characteristics of the created vortices. In

the DOWN case, the comparable beam and background density created such a

powerful sheath region as to overwhelm the classic beam-plasma instability, while

in the UP and FLAT runs this sheath merely served as the origin of all vortices.

The presence of the gradient, however, caused the electron vortices to exhibit

novel behavior. In the FLAT run, vortices are created and almost immediately

destroyed in a manner consistent with previous simulation efforts. However, in

the case of upward-flowing electrons through a density gradient, electron holes

form which via complex interactions and mergers separate out into long-lived

structures that persist throughout the simulation extent. These combined struc-

tures are a suggested mechanism for the prevalence of fast solitary waves in the

downward current region. Downward-flowing electron beams are shown to create

large, unstable vortices which naturally seperate without interaction but tend
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to dissipate rapidly, again suggesting a mechanism to explain the rarity of such

events in the upward current region. Both of these effects are due to a previously

unreported gradient-ward acceleration force acting on the solitary structures. The

action of this newly observed force causes compression in the UP run and rar-

efaction in the DOWN run of the spatial distribution of solitary structures. The

mechanism behind this acceleration is unknown but does roughly agree with the

linear wave phase velocity expectations in the density gradient. The persistence

of these structures beyond that observed in the uniform background cases seems

linked to the preservation of the cold nature of the electron beam. Even when

participating in trapping vortices, the beam population remains fairly coherent

and cold while the background electrons saturate the structure.

Finger-like spontaneous electron streams are emitted in front of solitary struc-

tures (section 3.6.3), especially those involved in vortex-vortex interaction. These

structures are similar to those produced by sheaths formed near charged space-

craft in beam experiments [WP87] [PW87]. Should these fingers become suffi-

ciently energetic and dense, they may themselves create small solitary structures

which then, in turn, produce additional, smaller fingers. Energy is thus trans-

ferred from scales of dozens of Debye lengths down to single Debye lengths.

Although counter-streaming electrons are found to be present in the FLAT

case, gradient interaction produces greatly increased counter-streaming due to

vortex interactions and mergers similar to those found above the acceleration

region [LBW82] [LSB84]. No evidence was found of these structures forming

double-layers or otherwise supporting non-zero net potential. However, this

would be prevented by the boundary conditions used at the top and bottom

of the box (Φ = 0).
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5.1.4 Future Work

Our potential signatures still do not closely resemble those found in space, as our

structures are too closely spaced and regular. However, we have shown that the

presence of the gradient does create forces which tend to stretch and randomize

the spacing between vortices. If the box could be made long enough that the

density gradient scale length were sufficiently longer than a Debye length, it is

quite possible that these mechanisms would continue to process the electron beam

structures into more space-like waveforms.

The short region during which linear theory could be used to examine the dis-

persion relation resulting from our particular box setup was a major limitation

in our analysis capabilities. This was a direct result of the low beam speed (4

vTe). Increased beam speed would weaken the beam-plasma interaction, thereby

requiring more z distance in the box to create solitary waves. A factor 4 increased

beam speed would have weakened the interaction to produce sufficient resolution

to accurately map the linear instability kz for closer theoretical comparison. How-

ever, as we must maintain an acceptable number of particles per cell, the number

of particles in the simulation must also increase as does the size of the box. As

our current runs required 1.9 Gig or 8 computers with 256 Meg RAM, a factor

4 increase would require 32 such computers or 8 computers each with a Gig of

RAM available. Although such computers were not available at the beginning of

this project, they now are commonly sold, and this experiment should now be

able to be run without difficulty.

The formation of a parallel potential drop is of great interest to the auroral

space community. In our simulation, we held the top and bottom boundaries fixed

at Φ = 0 for the added stability in the Poisson algorithm. However, permitting

the top, sparse region to instead have Ez = 0 would be a more realistic boundary

201



condition as well as permit large-scale electric fields such as the accelerating

potential drop. In such a simulation one might need to consider some form of

screening of the initial beam charge, or else enormous parallel fields will likely

develop due to charge separation, severely disrupting the density gradient before

the beam ever arrives.

The gradient acceleration force remains mysterious; there is much room for

basic research on this phenomenon. Variation of the simulation parameters would

permit one to probe the dependence of the acceleration on plasma statistics

(beam/background density ratio, beam/thermal speed, etc.). Further, a non-

uniform BGK theory would be very useful for comparison with the simulation

results and would be directly applicable to solitary wave structures in the real

auroral system.

5.2 Alfvén Waves

5.2.1 System Summary

We employed a 2.5D electromagnetic PIC simulation which included an elec-

trostatic Φ as well as a dynamic By and implicit inductive Ez. This restricted

Darwin scheme permits modified electromagnetic wave propagation without sup-

porting light waves (no displacement current). An antenna region was created

by superimposing a very strong, oscillating, external Ex which coupled directly

to the perpendicular ion current. The space-charge sheath thus formed by this

region then closes currents through the parallel electron flows and, if properly

tuned in frequency, couples to the Alfvén-like wave in the simulation. The wave

is launched into a uniform plasma for initial study. A second run permits the

wave to encounter a magnitude 8 density gradient and produces changes in wave
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characteristics and propagation due to the presence of the gradient.

5.2.2 Limitations and Problems

Nine constraints were discovered which, if not satisfied, produce inferior or use-

less results (section 4.2.3). Four deal with the basic requirements of all PIC

simulations involving particles per cell, number of cells, size of cell, and the den-

sity contrast requirement. Without satisfying these, the run is either impossible

due to lack of memory or unstable to numerical grid instabilities. A further two

restrictions dealing with the grid resolution of the smallest skin depth and avoid-

ance of strong Landau damping must be satisfied or else all launcher energy is

absorbed by the ambient electrons in bursting streams emitted from a massive,

growing sheath region. Finally, three additional requirements specify conditions

on the Alfvén wave to be launched such that its wavelength fit in the box, propa-

gate in a cone that may also fit in the box, and finally have a proper dependence

on ambient background density change. Unfortunately, we could only satisfy

eight of the nine constraints, the ninth listed above being impossible, and even

then only in a single parameter configuration. This led to a great restriction in

our analysis capabilities.

5.2.3 Results Summary

In the uniform background case an oblique, inertial Alfvén wave with clear signa-

ture was produced from the Ex antenna. Matching nicely with a 2-fluid dispersion

relation taking into consideration the precise fields used in the simulation (Φ, Az,

Ez inductive), it was seen to be composed of several parallel wavenumber modes.

Modification was noted from the fully electromagnetic dispersion relation due

to the restricted Darwin fields used. Each launched mode propagated with a

203



different cone angle, ranging from above 45 degrees down to nearly parallel prop-

agation. This produced a complex pattern near the antenna, but the various

modes separated with parallel distance from the antenna. The emitted mode

spectrum near the antenna was found to be similar to that predicted by the

Fourier decomposition of the antenna shape itself. No reflection was noted from

the boundaries, with the wave energy simply flowing out of the box.

Permitting this wave to approach an increasing density gradient demonstrated

the unfortunate results of the above limitations. The cone was seen to focus

inward compared to the uniform case as the parallel wavelength increased. This

relationship between wavelength and propagation distance favors reflection, which

was noted in abundance (up to 50% efficiency). However, no absorption of wave

flux was observed. It is believed that if the plasma parameters could have been

arranged to support decreasing wavelength with increasing density, absorption

would likely have been favored and our initial question addressed.

5.2.4 Future Study

The application of this simulation model has made possible useful, detailed nu-

merical experiments involving a gravitationally-bound density gradient. Unfor-

tunately, the computing power available for this investigation permitted only the

most cursory analysis. The simulation extent must be made larger in parallel

size, at least by a factor of four, and the density gradient increased accordingly

from 8 to 32. This would permit the Alfvén waves generated to be in the regime

where increasing density decreases their parallel wavelengths as in the natural

auroral plasma. Further, it would allow more than merely three wavelengths to

fit within the box, permitting more detailed study of the evolution of wave pa-

rameters as the gradient is traversed. Finally, a further increase in parallel size
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is recommended to reduce the change in ambient density within a single Alfvén

wavelength. This results in memory requirements on the order of a Terrabyte.

Shrinking the width of the simulation by a factor of 2 as well as relaxing the

density gradient could reduce this requirement to around 300 Gig. Clearly, for

the full analysis of this problem, clusters of PC’s will not be good candidates for

many years to come (by Moore’s Law, around 8 years should be sufficient). It is

only the constraint of memory which has prevented us from answering the basic

questions posed by this investigation. Thus, this simulation method should re-

main at the forefront of computational investigations of the auroral wave/gradient

interactions in the immediate future.
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APPENDIX A

Generalized Random Number Distributions

Customized random number generators play an important role in our codes. For

an excellent reference, see the book “Numerical Recipes” [PVT96]. Two methods

are available to generate such distributions, the first being optimized for speed,

the second being applicable to all distributions no matter how pathological.

A.1 Transformation Method

A general method to obtain a random number distribution with a specific his-

togram profile exists called the Transformation Method. It is restricted to en-

velope functions which are integrable and invertible, in that order. Specifically,

given a function P (y) which gives the probability of obtaining a specific value x

(i.e. the envelope function), we must obtain the area function for P by:

A(x) =
∫ x

0
P (y)dy (A.1)

We now invert this relation to obtain x(A). Last, we generate a random num-

ber between 0 and A, and use x(A) to obtain the location specified:

number = x(rand(0 → 1) · A) (A.2)

Given that the desired envelope P (y) can be so integrated and inverted, this
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method results in the fastest generation of a custom distribution and should be

used whenever possible.

A.2 Rejection (Guardian) Method

For those envelope functions which are not invertible, integrable, or manageable

in size, one may turn to an alternate method of distribution generation called the

Rejection Method[PVT96] or Guardian Method. While expensive in computation

and coding time and filled with pitfalls in regions of sensitive parameters, the

Rejection Method can always be made to work, even if in piecewise manner.

Given a desired envelope function P (y), obtain a second function f(x) such

that f(x) ≥ P (x)∀x. Function f(x) should be a custom random distribution

that is easily known and calculable (either a simple uniform random number or

a previously calculated result of the transformation method). f(x) should also

be selected so as to minimize the area between f and P , as the ratio of area

between the curves to that beneath f is proportional to the CPU time that will

be wasted by this routine. It is acceptable to modify the normalization of P and

f to accomplish this so long as neither function becomes 0 at any point. Also

ensure that both are normalized to accept x between 0 and 1.

The calculation of a candidate random number takes place in two parts. First,

a uniform random is determined as the candidate x to return. We must now per-

form a test upon this value however to include the envelope function’s probability

information. A second, uncorrelated random number based on f(x) as its enve-

lope is then obtained, and the condition:

random based on f(x) ≤ P (x)

f(x)
(A.3)
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Figure A.1: Rejection method
The initial trial value x is generated by a known envelope function P (x). The likelihood
of the desired distribution function f(x) is then compared with that of P (x), using
a separate, uncorrelated uniform random number. The trial value x is then either
accepted or rejected, and if rejected, the process continues anew.

If this relation is satisfied, then x is returned as the calculated custom random

number. If the relation is violated, then we have generated a random number in

f(x) that over counts P (x), and thus we reject it and re-perform the above calcu-

lations, with an additional uniform random candidate x and a new uncorrelated

random based on f(x). Thus the cycle may continue for some time if much of

f(x) is well above P (x) and the area of rejection is large.

This method of random number generation was used to implementmany of the

distributions in Aurora. However, the drifting Maxwellian distribution function

responsible for inserting particles in to the plasma at boundaries was sufficiently
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complex as to demand four separate envelope functions f(x) for differing regions

of x. As this function is so crucial to the proper functioning of our code, we

document the details here.

A.3 Flux Function Distribution

The flux function, the velocity integration of a drifting Maxwellian distribution,

predicts how many particles will cross a planar boundary in a 3D gas given a

temperature and time interval as well as their velocity distribution function:

P (v) =
∫ v

0
e
− 1

2

(
v−v0

vT

)2

dv = A1ve
− 1

2

(
v−v0
vT

)2

(A.4)

where r ≡ v0
vT

, A1
−1 = vT

2
(√

π
2
r(1 + erf [ r√

2
] + e−

1
2
r2
)

in order to preserve

the area beneath the curve to 1. As this function can be seen to go to zero at

both endpoints (0 and ∞), a uniform random number would make a terrible

approximation to its area, wasting many CPU cycles. Worse, for values of r

ranging from −∞ to ∞, any single, well-fitting envelope function in one area

will likely become a poor fit or, worse, dip beneath the flux function in another

area. In order to bound the function without wasting cycles for any value of r,

we employ the following envelopes:
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√
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Figure A.2: Envelope functions for Flux Function
Notice that the parameters of each envelope function P(x) have been carefully chosen
so as to ensure P (x) > f(x) and to minimize the area between the curves. Some of
these envelope functions may be used outside their given range but with increasingly
large wasted area.

where A1 is the normalization constant given above for the flux function itself.

These envelope functions have been carefully optimized by setting maxima equal,

minimizing area between curves, and ensuring no function overlap. They are

shown in figure A.2. They are all integrable and invertible and therefore can

quickly be generated using the Transformation Method given previously.
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APPENDIX B

Predictor-Corrector Engine Details

B.1 Time-Centered Pushing Algorithms

Previously in section 2.6 we detailed the application of the leapfrog method and

the complex time-centering considerations required to stabilize the algorithm for

electromagnetic codes. While this method was found to function, issues related to

the Windows 98 operating system’s networking routines caused the program to be

crash-prone, permitting only relatively small boxes and/or short runs in number

of timesteps. While this problem was explored at great length, it seemed to

arise from the manner in which network time-outs were handled by the low-level

network drivers, a layer inaccessible to Visual C++. In an attempt both to have

alternate confirmation of the code’s physics output and to escape the random

crash problem, a second code engine was constructed based on the predictor-

corrector algorithm. More complex than the leapfrog in many ways, the predictor-

corrector code was ultimately utilized to generate the results in chapter 4.

The predictor-corrector method is based on the idea that we may predict

that future value based on a simple Euler projection, enact those projections

upon the system state, then take the mean of these predicted results with a

stored past system state to obtain a better guess for what should have been used

to advance the system in the first place. The entire system state is then rewound

and advanced again using this better guess, resulting in an algorithm as accurate
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as the bare leapfrog scheme at the cost of maintaining past information about

the system and advancing each timestep twice. Let us explore a SHO before

we treat the much more complicated Auroral variables. A simple SHO problem,

using Eularian advancement, is seen to be:

an = −ω2xn−1

vn = vn−1 + an−1Δt (B.1)

xn = xn−1 + vn−1Δt

which manifests all the problems documented in section 2.4 for bare Eularian

schemes. Now, instead of attempting to time-center or introduce an Euler-

Chromer method, let us instead define three system states: that of n − 1 for

the “past” state, n for the current state, and n + 1 for the future state. Further,

let us define that the subscript p indicates a “predicted” quantity which will even-

tually be overwritten with a more correct value. Thus, for the prediction step

attempting to advance from n to n + 1, we proceed forward with an Eularian

advancement ignoring the inherent inaccuracy:

an = −ω2xn

vp,n+1 = vn + anΔt (B.2)

xp,n+1 = xn + vnΔt

ap,n+1 = −ω2xp,n+1
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But we also have a stored system state n − 1. Taking the average of p, n + 1

and n − 1 states obtains a superior guess for the acceleration at n given above:

an =
1

2
(ap,n+1 + an−1) (B.3)

Now, given this superior guess, we may re-advance our system state from n − 1

to n + 1 without worry of Eularian error:

vn+1 = vn−1 + 2anΔt (B.4)

xn+1 = xn−1 + 2vnΔt

Lastly, we shift n + 1 to n and n to n− 1, to keep a fresh backup of the previous

system. The cycle then continues. Notice that no 1
2

timesteps were referened.

Instead, advancement over two timesteps was used. Hence, this method of ad-

vancement can provide a sort of additional blurring to the highest oscillation in

the system.

In the case of the Aurora variables, we have a medley of variable types. x,

vx, vy, due to their lack of dependance upon Az, are still advanceable using the

implicit method given in by equation 2.37. However, z and pz both intimitely

depend upon Az. Indeed, even in the Leapfrog method of section 2.6, we were

forced to extrapolate from stored system fields to time-center the Az fields with

respect to its dependencies. Here we will utilize the predictor-corrector method

instead. The relationship between various system variables can be found in figure

B.1. Recall that for a variable to be advanced, all dependencies in its advance-

ment equation must be a half timestep ahead of its current known quantity. The
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full order of implementation used in the Aurora program is as follows (with only

advancement-oriented actions included):
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PROGRAM ACTION CALCULATED INPUTTED

Accumulate Charges n x z

Accumulate Currents pn qn x z pz

Calculate Electrostatics Φ Ex Ez n

Calculate Magnetostatics Az By pn qn

Push vx and vy vx vy x z Az By Ex Ez vx vy pz

Push x position x vx

Calculate vz vz pz Az

Predict z position zpred vz zold

Predict pz momenta pzpred Ez x z pzold

Backup x positions xback x

Apply boundaries x zpred pzpred vz vx

Inject Temp Particles

Accumulate Charges npred x zpred

Accumulate Currents pnpred qnpred x zpred pzpred

Calculate Electrostatics Φpred Ex,pred Ez,pred npred

Calculate Magnetostatics Az,pred By,pred pnpred qnpred

Restore x positions x xback

Correct pz pz pz x z Ez Ez,pred

Calculate vz vz,pred pz,pred Az,pred

Correct z position z zold zpred vz vz,pred

Apply boundaries x z pz vz vx

Inject New Particles

Shift timesteps current→old, predict→current

Repeat

The equations that make up the above algorithms are as follows. For the pushing
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Figure B.1: Variable Grouping for EM Predictor-Corrector Algorithm
Note that position and momentum variables are placed on integer timesteps, whereas
velocity variables are on half-integer timesteps. Black variables are “fundamental,”
meaning that other quantities are calculated from them each timestep. Blue variables
are deduced from black variables and are generally those quantities of interest we output
from the simulation. Green variables are predicted quantities temporarily generated
each timestep. Magenta variables are mean corrected quantities calculated during the
corrector step. Red variables are stored copies of the previous timestep. Finally, orange
variables are temporary backup copies made during the predictor step. All variables
beneath the horizontal dotted line are additional to the basic variables due to the
predictor-corrector algorithm.
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of vx and vy we have already provided the fundamental equation in equation 2.37,

as there is no other additional complication there due to the predictor-corrector

scheme. Advancing the x position is attained via:

xnew = xold + vxΔt (B.5)

Calculation of vz is achieved by:

vz =
1

m
(pz − qAz) (B.6)

Prediction of the z position can be obtained by advancing the old z position

forward two timesteps as shown in:

zpredicted = zold + 2vzΔt (B.7)

Prediction of the pz momentum is acquired in similar manner, including the

gravitational atmosphere terms (g is negative in our simulation):

pz,predicted = pz,old + 2q(Ez + Ez,atmosphere)Δt + 2mgΔt (B.8)

For a discussion of the application of boundary conditions and particle injec-

tions and the resulting difficulties in the predictor-corrector scheme, see the next

section.

To correct the z momenta, we use (again including atmospheric gradient

terms):

pz = pz + q(
1

2
(Ez + Ez,predicted) + Ez,atmosphere)Δt + mgΔt (B.9)

Similarly, we obtain the corrected z position by:
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z = z +
1

2
(vz + vz,predicted)Δt (B.10)

Thus the advancement is done. The future timestep is shifted to present, the

present to the past, and the cycle repeats.

B.2 Boundaries/Injections in Predictor-Corrector Schemes

The application of the boundary conditions and particle injection methods dis-

cussed at the beginning of chapter 2 apply in a straight-forward manner to

Eulerian and leapfrog pushing algorithms, where each timestep has a single cy-

cle into which the application of particle creation or destruction can be inserted

at any convenient point (usually as the last task before cycle repeat). However,

within the predictor-corrector scheme, we employ a dual-cycle loop that “guesses”

and then corrects some of the error made. Therefore, destruction and birth of

particles becomes an issue of great importance in order not to disturb the delicate

relationship between the two phases of time advancement.

First with regard to boundary conditions, we see that it is necessary to apply

the boundary conditions twice. The first time per timestep will be during the

prediction phase, where particles will be allowed to leave the box. They will

therefore not be included in the calculation of the predicted field solutions. This

is all quite consistent and sensible; however, it quickly becomes clear that without

immediate injection of new particles, a net positive charge is built up at boundary

edges, since electrons leave the box faster than ions. This causes the predictor

step to always observe a highly charged region and predict a severely unphysical

electrostatic potential. This is worsened in boxes such as ours with clamped Φ

at top and bottom, where such high charge densities near the clamping point
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can produce enormous amplitude whole-box modes with a 1/2 sine wave varia-

tion across the box. Therefore, particles MUST be injected each time they are

permitted to leave the box. This solution is adequate and removes the apparent

difficulty.

Difficulties arise yet again, however, when we approach the correction step.

Clearly, particles which mistakenly left the box during the predictor phase must

be permitted to return should their corrected location be instead within the box.

Also, particles which were injected during the prediction phase should be removed

so that the proper injection may take place during the final, more accurate phase.

Therefore, particles in the prediction phase are not killed but merely ignored

should they land outside the box. If they remain outside the box in the second

application of the boundary conditions during the correction phase, they are truly

destroyed. For particle injections, the initial wave of “predicted” injections are

deleted immediately after they are used to maintain charge neutrality, and the

second “corrected” injection particles consist of a full injection cycle without any

knowledge of the first.

All of this is, of course, much less difficult should we be in a fully periodic

system where no particle injections or destructions take place. However, we only

utilize a periodic configuration for testing purposes, as we are interested in the

bounded, non-periodic case.
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APPENDIX C

Non-Uniform Background Magnetic Field

As we have taken �B to be constant in the electrostatic engine but have not

specialized to any particular �B, it is easy to generalize the pushing matrix 2.14

to one with a pre-described Bx, By, Bz as a function of space. This permits

us to examine the effect of the mirror force upon the particles by introducing

a gradient into the background magnetic field at the expense of calculating the

matrix components of 2.14 for each particle every timestep. Initial investigations

into this possibility yielded surprising results that did not generally benefit our

model; they are documented here should they be needed again for further work.

Initially, we added a test field given by Bz = B0[
1
2
(z−1)+1] (where z ranged

from 0 to 1, bottom to top of the box) which yields a strong positive gradient

(recall ẑ points upwards in our simulation). All other field components were set

to zero. While the particle’s gyrofrequency underwent the appropriate reduction

in the higher field, its parallel velocity component showed no sign of interaction

with the magnetic gradient and hence no mirror force (see figure C.1). This is due

to the fact that the mirror effect is a natural result of the divergence-free nature

of the field “tilting” the particle’s orbit perpendicular to the main background

component.

In order to ensure divergence-free fields, given a Bz(x, z) requested by the

user (or required by the model), one must invert �∇ · �B = 0 to obtain the other

necessary components of B. Given that we can only support gradients in the x
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Figure C.1: Particle traces in a magnetic gradient
Particles show the appropriate change in gyroradius as they encounter the gradient,
but due to the lack of divergence-free fields, they experience no mirror force.

and z directions of our 2.5D simulation, we obtain:

Bx = − 1

Υ

∫
∂

∂z
Bzdx (C.1)

where Υ is the normal aspect ratio. Given Bz(x)(z) = f(x)g(z), we obtain:

Bx = − 1

Υ

∂g

∂z

∫
fdx (C.2)

Using this field together with our previous positive gradient solution, we ob-

tain the desired magnetic mirror force as predicted by single-particle theory. And

yet these results prove untenable to our simulation due to the x-periodicity

requirement of our Φ solver. Any attempt to include such a non-constant,

divergence-free magnetic field will be thwarted by the requirement for period-

icity, and as such we have abandoned it’s inclusion in our simulation.
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APPENDIX D

Diagnostics

Though not as difficult or physics-intensive as the construction of the plasma sim-

ulation itself, the researcher must also build sophisticated diagnostics to answer

scientific questions of the dataset produced. Simple line plots are insufficient to

convey the totality of the plasma’s behavior. We have listed here the tools used

in our discoveries using the Aurora program, as well as some actual code used in

Matlab [Mat99] to enable them.

D.1 Line Plots

The most basic of all graphical methods, first introduced by Descartes in the 17th

century, line plots are supreme in their deliverance of a clear, easily-measurable,

one dimensional data stream. One may extend their utility by overlapping mul-

tiple datastreams on a single plot, usually requiring colors for easy reference, to

represent multiple measurements of interest over the same independant domain.

To understand two or three dimensional data, however, requires far more than a

few line plots at various angles. See figure D.1 for examples of the clarity and the

limited data view of the simple cartesian line plot. Features of Aurora that were

best represented with line plots were integrated density as a function of z (to

observe changes in the background gradient), total field energies as a function of

time, and the total kinetic energy of each particle population as a function of time.
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Figure D.1: Examples of Typical Line Plots
Line plots are best for examining macroscopic behavior as a function of space or time.
Large density contrasts, fine-detail oscillations over the whole run, etc.

MATLAB CODE EXAMPLE:

PLOT(data,’r’) Create a red plot line containing data

GRID ON Establish grid lines for easier viewing

AXIS TIGHT Draw axis in minimum axis necessary

LEGEND(’KE x’) Establish a legend for the data

XLABEL(’t*Omega i’) Label the x axis so as to be easily readible

YLABEL(’KE x/thermal energy’) Label the y axis so as to be easily readible

TITLE(’Verbose title’) Specific graph label
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Figure D.2: Examples of Typical Grid Plots
Grid plots are perfect for representing a still-shot of any gridded plasma parameter.
Here we see, starting from the left, Φ field, Ex field, Electron particle density, and Jz

current of electrons.

D.2 Grid Plots

Grid plots are inherently two-dimensional displays upon which some gridded

plasma data is portrayed. These permit an instantaneous and complete under-

standing of x and z structure at an instant in time which would be tedious and

difficult to obtain with a series of line plots. Perfect for spotting potential wave

packets, examining density modulations, or monitoring electromagnetic fields,

the grid plot is less useful as shown on the right-most panel of figure D.2 where

each cell rapidly varies from its neighbors (such as in a noisy thermal plasma

when a signal current is small). It is crucial to employ a few strict rules when

using gridded plots to maintain their utility and consistency. First, a colorbar is

mandatory so that the data color can be easily connected to a physical number.
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Second, yet more important, is that the spectrum of colors have a logical position

of zero. This means that for a bipolar field (such as Φ, Ex, Ez, By, jz, etc.) one

should equate the positive and negative maximum amplitudes of the graph, and

utilize a color scheme that shows easily distinguished color groups above or below

zero, such that zero is identically black or white in the middle. This permits quick

surveying of the data with the human eye without confusion as to the location

of zero nodes. Further, if the data is monopolar, ranging from 0 to some positive

value say, the colorscheme is best made to have white at the top, black at 0, and

range through a simple progression of colors between, that the human eye again

can see the brightness of the color as equating to its magnitude.

MATLAB CODE EXAMPLE:

SURF(data) Plot 2D data array on grid,

using color/altitude as magnitude

SHADING INTERP/FACETED INTERP smoothes colors of adjacent cells,

FACETED preserves seperate cell colors

AXIS TIGHT Same as above

XLABEL(’X’) Same as above

YLABEL(’Z’) Same as above

ZLABEL(’Phi*qe/T e’) Label the new z axis

TITLE(’Verbose title’) Same as above

VIEW([0 90]) Causes view to rotate straight down,

defining the grid plot type

BIPOLAR COLORMAP A user-written routine to scale colormap

-MAX to +MAX, black=0, hot/cold colors

COLORBAR Creates colorbar value map

225



Figure D.3: Example of Typical Surface Plots
Beyond grid plots, Surface plots promote a high understanding of the peaks and valleys
of the data more deeply than color variations communicate.

D.3 Surface Plots

Surface plots are identical to grid plots, save that instead of or in addition to

representing the plasma quantities in each grid cell with a color, they are also

portrayed as a height in a three-dimensional space. They are achieved with

identical commands as the grid plots given above, save with the modification of

a single VIEW command. While not generally as useful, as in 3D plots it is

necessary for some features to hide others, they can be instructive should the

shape profiled be smooth and simple, without significant noise. Also, we can use

the SURFC command in the place of the SURF command above to generate a

contour plot beneath the surface plot to further assist visualization of the 2D

data array. See figure D.3 for an example.
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Figure D.4: Example of Typical Arrow Plots
Poynting flux of an Alfvén wave proceeding downward in the box. The launcher region
has been blacked out due to its intensity.

D.4 Arrow Plots

Arrow plots (Quiver Plots) are used where vector quantities such as the Electric

or Magnetic Fields, the Poynting Flux, currents, etc. must be understood in a

full vector sense. These plots simultaneously show total magnitude and direction

of the vector quantity viewed in a way nearly impossible to achieve from two

seperate grid plots of the components. For Aurora, we generally use arrow plots

for the Poynting flux only as shown in figure D.4.
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MATLAB CODE EXAMPLE:

QUIVER(datax,datay,0) Plot arrows on the grid

It is common to scale datax,datay to be a reduced

grid from the total data, and multiply it so that

The arrows fit within the box nicely

AXIS ([user axis]) Usually one desired a fixed axis

XLABEL(’X’) Same as above

YLABEL(’Z’) Same as above

TITLE(’Verbose title’) Same as above

D.5 Particle Phase Space Plots

These much more intricate plots require considerable programming and thought

to perform well. Phase space involves the mixing of a position and velocity co-

ordinate (in the case of Aurora z and vz, such that basic SHO signatures may

be clearly visible (as they form elipses in this space). One may just as easily

use any other coordinate vs. any other velocity to probe other orientations and

kinds of oscillations. Each dot on the graph represents an actual simulation par-

ticle, requiring that these graphs store enormous amounts of data compared to

the previous graphs mentioned here. Due to the fact that Matlab stores all data

associated with such a graph in memory (which is impossible for 10e6 particles),

I was forced to manually write a graphing routine that simply plotted pixels on

a fixed-resolution graph and wrote that image to disk. Despite its complexity,

these graphs are exceptionally efficient at delivering information of oscillations

within particle populations and their development through space. See figure D.5

for an example.
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Figure D.5: Example of Phase Space Plots
A plot of electrons participating in the electrostatic cold beam used in chapter 3. Note
the obvious portrayal of the electron structures which would otherwise merely look like
density and charge fluctuations.

MATLAB CODE EXAMPLE (ignoring loop structures):
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FREAD(positions,how many,’double’) Load in the r’s to use

FREAD(velocities,how many,’double’) Load in the v’s to use

(APPLY FILTERS) Screen out noninterest particles

(CUSTOM PLOTTER) Custom routine to write pixels

without storing particles in memory

AXIS TIGHT Same as above

XLABEL(’X’) Same as above

YLABEL(’Z’) Same as above

TITLE(’Verbose title’) Same as above

CUSTOM PLOTTER:

PLOT(0,0) Plot meaningless point to create graph

AXIS([x1 x2 y1 y1]) Set axis of desire

[in,col]=GETFRAME Grab a graphics image of the empty graph

IMAGE([x1 x2],[y1 y2],in) Redisplay the image of the empty graph

COLORMAP(col) Set the colormap to the captures one

in(tx,ty)=4 Manually set pixels in image for each (r,v)

IMAGE([x1 x2],[y1 y2],in) Redisplay the image of the full graph

D.6 Movies

Movies are not properly plots but instead ordered stacks of plots of any kind.

These plots usually show identical scales and data, save for the slight advancement

of a time or space index. The apparent motion thus resulting takes advantage of

our brain’s natural ability to visualize movement as a new variable or parameter,
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Figure D.6: Still-frame Example of Movie
Movies grant an intuitive understanding of wave interactions, phase and group velocity,
and the most significant perturbations to the plasma system. Here we see an Alfvén
wave propagating down the box. Here it is hard to see, but if these four cells could be
animated on the page, it would be obvious for anyone without training.

yielding a far deeper understanding of the temporal/spatial development of a

system so visualized. Movies may be made of any of the plots above, with each

231



individual movie benefiting from the unique pros and cons of its component graph

types. Aurora benefits richly from grid and phase space movies which together

permit deep analysis of wave-particle interaction.

While deceptively simple in design (being merely the sum of previously-

discussed graphing routines), the process of making a movie is suprisingly time-

consuming and requires meticulous coding to perfect. For instance, to make a

typical Auroral movie, first the data must be explored for appropriate scales and

limiting values. Then the kind of data to be represented is selected (usually

around 8 kinds of data plots). Then multiple computers embark on the lengthy

process of rendering the appropriate graphical images and writing them to a com-

mon hard drive. Once this is complete, the files are then fused with a custom

program I wrote in C++ which takes the 8 kinds of graphs (each with hundreds

or thousands of frames individually stored) and fuses them together in an ap-

propriate way (vertical, horizontal, side-by-side, top-to-bottom, etc.) Once this

process is complete, we use Adobe Premier (or other movie-creating software) to

package the remaining thousands of frames into a single, compact, compressed

MPEG or QuickTime movie, chosing the appropriate compression method for the

data rendered. The total process to make a quality, multi-data movie of a typical

run requires approximately 5-6 hours of work, assuming all Matlab scripts are

fully debugged and reliable.

When adjusting plots to become movie-ready, it is important to decide on

a very easy-to-read unit scale. The viewer should be able to immediately com-

pare as many plots as possible with identical colors meaning some strong relation

between very dissimilar plots. Further, all graphs should be stamped with the

time, again in some appropriate units, such that questions of speed may be easily

resolved.
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MATLAB CODE EXAMPLE (ignoring loop structures):

(READ IN CUSTOM DATA) Load in a single data frame

We can’t usually load all at once

(GRAPHING ROUTINE) Whatever style of graph desired

(WRITE IMAGE TO DISK) The heart of the movie-making process

WRITE IMAGE TO DISK:

F=GETFRAME(GCF); Capture current frame image

IMWRITE(F.CDATA,FILENAME,’BMP’); write captured image to disk

D.7 Fourier Studies

Appearing in a variety of form and function, few scientific fields do not take

benefit from the Fourier transform. Whether for mere filtration of specific �k’s or

more advanced analysis of wave behavior, understanding the Fourier application

to visualization is a powerful yet basic technique.

The first most basic Fourier visualization technique is that of t → ω with

data taken over a time series. Such data could be taken at a specific physical

location on the grid, or might be the sum of the RMS fields over the whole box

to represent energy per time. Regardless, once the desired data to investigate is

loaded into a 1D array, we simply issue the following commands:
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Figure D.7: Example of Three Fourier Plots
The top is a line plot of ω vs. power, the middle is kx vs kz with color as power, and
the final is kθvs.ω with color as power.
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TRANSFORM=FFT(DATA); Take Fast Fourier Transform of data

POWER=ABS(SPECTRUM); Find power of (complex) transform

SEMILOGY(AXIS,POWER); Traditionally, log graphs used to display

Fourier transforms due to ranging values

It is important to remember in any Fourier work that the returned array will

be redundant due to a left-right symmetry in the Fourier transform. Therefore,

analysis should only occur on the left-half of the “power” or “spectrum” arrays.

The above approach yields results which permit calculation of relative wave

power at various frequencies. See the example plot figure D.7 in the top panel

where a frequency peak can be seen amidst the normal
1

ω
dependence. This is

often sufficient analysis for a simple experiment. However, when �k and ω both

may vary, we must turn to more sophisticated methods of analysis.

The second most basic visualization method studies x → kx and z → kz at

a single instant in time on the grid. This permits a snapshot analysis of which

wavelengths are active and which are dormant. The routine is similar to the one

above, but includes the additional complexity of a 2D Fourier transform:

DATA(T,:)=FFT(DATA(T,:)); Take FFT of data along row

DATA(:,t)=FFT(DATA(:,T)); Second FFT along other axis

t is variable of iteration

POWER=ABS(DATA); As above

GRID(AXISX,AXISY ,LOG(POWER)); Manually take log

With such a plot, we may examine asymmetries in kx and kz that indicate

wave action and further assist in their classification. Notice in the example plot

figure D.7 that the second plot shown has faint x-oscillations near the origin,

indicating small-wavelength x structures have begun to form.
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The final form of Fourier analysis discussed here is called a “Fourier Cube” in

my terminology wherein we study the full system transform x → kx, z → kz, and

t → ω. Requiring large amounts of memory to process quickly, such a routine

performs a full 3D transform upon the data. The output is then, however, a solid

cube of data which must be represented with slices through the cube at user-

definable angles. In this way, we may select a wave propagation direction (kx

kz
) and

receive a planar cut of the cube showing what ω are active for various wavelengths

along the specified angle. These plots are required if off-axis propagation is to

be studied, as only using kx or kz independently take projections of any oblique

k’s and yield indecipherable k vs. ω plots. Due to the large amount of memory

and processing, these figures require between ten minutes to an hour to complete

even using efficient code. The Matlab code for the process will not be posted as

it is essentially the same as for the kx vs kz plot save for the extension to 3D and

the need to carefully extract the plane of interest from the cube. An example is

provided as the bottom panel of figure D.7 where ω vs. k relationships can be

seen as regions of high activity otherwise invisible to simple Fourier analysis.
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APPENDIX E

Beam Plasma Dispersion Relation

The case of a weak beam interacting with a uniform plasma is treated in many

textbooks[BL91]. An ordinary 1-D solution to the beam-plasma interaction can

be applied to our system as follows. Such instabilities are often well described

by cold, electrostatic 3-fluid theory. We utilize this treatment (including ions,

neglecting temperature, examining only Kz solutions) to obtain the following

dispersion relation:

0 = 1 − 1 + d

W 2
− nb

(W −K)2 (E.1)

where W ≡ ω

ωpe
, K ≡ kzvb

ωpe
, nb ≡

ω2
pb

ω2
pe

, and d ≡ m

M
.

Now we have a choice. We may either solve for real K and complex W or vice

versa. As our problem is a boundary value problem, it seems natural to permit K

to be complex and take ω to be real. We will persue both paths here and justify

our selection afterwards.

Solving for real W and complex K, we obtain through simple algebra:

K1 = W

[
1 +

√
nb

W 2 − (1 + d)

]
(E.2)

K2 = W

[
1 −
√

nb

W 2 − (1 + d)

]
(E.3)
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Figure E.1: Beam Plasma Dispersion Relation W real, K complex
Dispersion relation neglecting thermal effects, with only Kz modes displayed. Top is
real K vs. ω. Bottom is imaginary K vs. ω.

Notice in the graph of these solutions in figure E.1 that for low frequency

W < (1 + d) or for the weak beam limit nb → 0 both roots are given by a much

simpler relation:

Kreal = W (E.4)
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Kimag = ±
√

nb

W 2 − (1 + d)
(E.5)

Since only Kimag < 0 will grow, we immediately see that between these two

modes, only K1 supports a growing mode, which is restricted to the region W <

1+d and obeys W = K for the real components of K. These are indicated by solid

lines in the figure E.1. However, strange behavior is apparent in this graph: a

singularity is present at W = 1, with infinite growth rates shown at W = 1 while

approaching from below. A sudden discontinuity in W(K) as one passes through

W = 1 also seems unusual. Not only are these odd features, but as we will see

the measured frequency in our simulation is actually near or even above W = 1,

beyond any permitted solution we observe here. To understand this mystery, we

will pause in our analysis of this strange root and return to the other option in

solving the dispersion relation E.1, namely that of complex W and real K.

The dispersion relation is recognized to be 4th order in W while only 2nd order

in K. Thus, while analytic W solutions are theoretically achievable, they will likely

prove intractable due to size and complexity. We utilized Mathematica, but still

the solutions resisted reduction efforts. Finally, it was decided to simply solve the

dispersion relation numerically in a direct manner, yielding figure E.2. On the left

of the graph, panels A and B show the real and imaginary components of W vs.

K for the four roots corresponding to nb = 0.1 (the value used in our simulations).

We see completely new behavior in these relations as compared with our previous

solution attempt, including a bifurcation point between roots 2 and 3. The real

W vs. K shows no singular behavior at W = 1. Positive growth can only be

found for root 3, with root 1 and 4 having no imaginary component and root 2

showing damping behavior. Note that all growth terminates by around K=1.75.

We note lastly that the peak growth for root 3 is found to be at K = 1.19±0.01,

although this quotation of error ignores the fundamental error of applying a fluid
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Figure E.2: Beam Plasma Dispersion Relation W complex, K real
Panel A: real W vs. K solutions for all four roots given nb=0.1.
Panel B: imaginary W vs. K solutions for all four roots given nb=0.1
Panel C: real W vs. K solutions for growing root 3 for various nb values.
Panel D: imaginary W vs. K solutions for growing root 3 for various nb values.
Panels C & D use only allowed K’s from our simulation.

theory to the plasma itself. Such a maximally growing K results in a predicted

W = 0.90 ± 0.01. We will examine these predictions in a moment. Panels C

& D show only the growing root (3) for various values of the parameter nb,

again with 0.1 being chiefly used in our simulation. Note that as the relative

density of beam to background increases, the growth rate increases, the range of

K permitting growth increases, and the K corresponding to the maximum growth

moves higher (i.e. smaller spatial scales). The curves shown in the rightmost two
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panels appear broken and sparse due to the fact that only allowed K simulation

modes have been plotted.

To reconcile the quandary of which dispersion solution set to believe, we turn

to an analysis of the simulation itself. During the execution of the field solvers

(see section 2.5.1), we employ a division by K2 to undo Poisson’s equation. We

do this using only the calculated real K’s in the box after performing a Fourier

transform. Thus, we ignore any imaginary K’s that might be present should we

be using a complex K description. Thus, since the box neglects any imaginary K

information at each timestep, it is impossible that any such complex K solutions

could ever manifest in the box. All simulation responses must therefore grow via

complex ω solutions. While this does not settle the general question of whether

a beam in a real plasma will exhibit these complex K modes including their

singularity at W = 1, it does clarify which approach we must use in the analysis

of our box.

Given the empirically obtained spectral information of the electron beam in

figures 3.14 and 3.15, we have W =
ω

ωpe
= 1.02±0.01 and K =

kzvbeam

ωpe
= 1.2±0.3

which is equivalent to kzλDe = .3 ± .1. The poor resolution of K is due to the

small number of grid cells (30) which make up the linear region. The resulting

wavelength is thus 22 ± 6 Debye lengths. Notice that the power spectrum has

a broad peak, showing strong oscillation at K = 1.8 ± 0.3 or 14 ± 5 Debye

lengths also. Using the simple approximation E.4, we find agreement within our

estimated error for K.

If we were to utilize the complex K analysis (equation E.2) to solve for K1

and K2 based on our well-measured W , we obtain the following using nb =
1

10
,

d =
1

64
, and W = 1.02:
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K1 = 4.2 ± 1.6

K2 = −2.1 ± 1.6

Notice that neither of these solutions are complex and one is off from our

measurements by a factor of 2. Hence, they could not grow and cannot explain

what we observe.

Instead let us utilize our complex W, real K solution as shown in figure E.2.

As shown in the graph (which assumes nb = 0.1), the predicted peak growth rate

yields K = 1.19±0.01 in excellent agreement with the empirical value of 1.2±0.3.

Applying the dispersion relation for complex W gives real(W ) = 0.90 ± 0.01,

which unfortunately disagrees somewhat with the measured value of 1.02± 0.01.

This deviation results from neglecting the beam’s finite width. Obviously, the

simulation is indeed using the complex W, real K solutions as we have argued it

must previously.

We might seek to explain this discrepancy in observed W by invoking the

steady loss of background electrons in the beam channel which changes both

the local plasma frequency as well as the relative density ratio between beam

and background. This option is explored thoroughly in figure E.3, where we

examine the density changes at the point X=30, Z=32 throughout the run time

and continuously compute the resulting W and K solutions given that K and

W are both dependent on the local background plasma frequency as well as the

parameter nb. In Panel A, we observe that the background plasma frequency

decreases by approximately 9% over the run. Panel B shows a similar graph for

nb, whose 225% increase is due both to increasing beam density and decreasing

background density. Panels C and D show related graphs, C of the imaginary W

vs. K and D of the real W vs. K. Both show the instantaneous solution for real
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Figure E.3: Change in W/K solutions due to Density Fluctuations
Panel A: Change in background plasma frequency over total run time
Panel B: Change in relative beam/background density parameter nb over total run time
The Panels below track the complex frequency vs. K at a point throughout the total
run time. ROYGBIV coloration corresponds to increasing simulation time.
Panel C: Imaginary(W)/K solutions taken at point (32,30).
Panel D: Real(W)/K solutions taken at point (32,30).

K and complex W given a fixed λz as empirically determined above. Note that

this type of graph colors the parameter path from red to violet as the rainbow

progresses to indicate initial, final, and intermediate locations in time. Although

the random motion of the solutions are large compared to their total drift, it is

also clear to observe that the growth rate in panel C tends to increase as the
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run progresses, whereas the real frequency in panel D tends to decrease. This is

precisely the opposite correction to explain the observed deviation in the real W

solution obtained above.

Although effects such as net charge imbalance imposed on the system by

the beam have not been taken into consideration, the frequency mismatch is

still clearly a problem. Further, the beam’s small width should be a significant

contribution to its physics, as the width is less than the z wavelengths of the

vortex structures. Finally, the flood of warmed electrons counter-streaming from

vortex creation farther upstream creates a third species of electrons filling the

beam channel. This counter-streaming population is but one example of the

many kinetic effects which are quickly realized in the simulation, which again

this linear fluid theory cannot treat.
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